SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babes-Bolyai University
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master of Science
1.6 Study programme / Qualification	

2. Information regarding the discipline

| 2.1 Name of the discipline (en)
 (ro) | Topics in Geometry III | | |
| :--- | :--- | :--- | :--- | :--- |
| 2.2 Course coordinator | Prof. PhD. Dorin Andrica | | |

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	$\mathbf{3}$	Of which: 3.2 course	$\mathbf{2}$	3.3 seminar/laboratory	$\mathbf{1}$
3.4 Total hours in the curriculum	$\mathbf{3 6}$	Of which: 3.5 course	$\mathbf{2 4}$	3.6 seminar/laboratory	$\mathbf{1 2}$
Time allotment:		hours			
Learning using manual, course support, bibliography, course notes	$\mathbf{5 0}$				
Additional documentation (in libraries, on electronic platforms, field documentation)	$\mathbf{3 0}$				
Preparation for seminars/labs, homework, papers, portfolios and essays	$\mathbf{3 4}$				
Tutorship	$\mathbf{4 0}$				
Evaluations	$\mathbf{1 0}$				
Other activities:					
3.7 Total individual study hours	$\mathbf{1 6 4}$				
3.8 Total hours per semester	$\mathbf{2 0 0}$				
3.9 Number of ECTS credits	$\mathbf{7}$				

4. Prerequisites (if necessary)

4.1. curriculum	Minimal knowledges of vector calculus, complex numbers and analytic geometry
4.2. competencies	\bullet

5. Conditions (if necessary)

5.1. for the course	\bullet
5.2. for the seminar /lab activities	\bullet

6. Specific competencies acquired

| • The capacity to understand methodical and scientific mathematical works, to propose new |
| :--- | :--- | :--- |
| Problems and to open new research. |

7. Objectives of the discipline (outcome of the acquired competencies)

| 7.1 General objective of the |
| :--- | :--- |
| discipline |\(\left|\begin{array}{l}1. To obtain new notions and results in geometry which are useful to understand

and to improve new directions in modern mathematics.

2. To get the abilities to apply the new theoretical results in the study of some

concrete problems in a modern setting.

3. To realize connections with other mathematical disciplines.\end{array}\right|\)| 7.2 Specific objective of the |
| :--- |
| discipline | | At the end of the course the students will be able |
| :--- |
| 1) to identify correctly various geometric configurations and the existing |
| connections; |
| 2) to combine the results and the methods in order to solve geometry problem |
| of various level of difficulties. |

8. Content

8.1 Course	Teaching methods	Remarks
1. Week 1: Elements of vector algebra in plane and space.	presentation, explanation, dialog, problem-solving	
2. Week 2: The dot product and Lagrange Theorem.	presentation, explanation, dialog, problem-solving	

3. Week 3: The cross product and the triple scalar product.	presentation, explanation, dialog, problem-solving	
4. Week 4: The group of isometries	presentation, explanation, dialog, problem-solving	
5. Week 5: Nonisometric transformations : homothety	presentation, explanation, dialog, problem-solving	
6. Week 6: Nonisometric transformations : inversion	presentation, explanation, dialog, problem-solving	
7. Week 7: The real product of two complex numbers	presentation, explanation, dialog, problem-solving	
8. Week 8: The complex product of two complex numbers	presentation, explanation, dialog, problem-solving	
9. Week 9: The n-th roots of unity	presentation, explanation, dialog, problem-solving	
10. Week 10: Classical theorems proved by complex numbers	presentation, explanation, dialog, problem-solving	
11. Week 11: The group of plane isometries described by complex numbers	presentation, explanation, dialog, problem-solving	
12. Week 12: Nonisometric transformations of complex plane	presentation, explanation, dialog, problem-solving	
Bibliography 1.Andreescu,T.,Andrica,T.,Complex Numbers from A to...Z, Second Edition, Birkhauser,2014. 2.Andrica,D, GEOMETRIE. Teme pentru perfectionarea profesorilor de matematica 4, Casa Cartii de Stiinta, 2017. 3.Andrica,D.,s.a.,Teme si probleme alese de geometrie,Editura Plus,Bucuresti,2002. 4.Andrica,D.,s.a.,Matematica de baza,Editura Studium,Editia a 4-a,Cluj-Napoca,2004. 5.Berger,M.,Geometrie, CEDUC NathanParis, 1977-1978. 6.Coxeter,H.S.M.,Greitzer,S.L.,Geometry Revisited,Random House,New York, 1967. 7.Engel,A.,Problem-Solving Strategies,Springer Verlag, 1998. 8.Fenn,R.,Geometry,Springer Verlag,2001. 9.Hahn,L.,Complex Numbers \& Geometry,The Mathematical Association of America, 1994. 10.Mihalescu,C.,Geometria elementelor remarcabile, Societatea de Stiinte Matematice din Romania,2007.		
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Collinearity problems solved by vector algebra	conversation, dialog, problem-solving strategies	

2. Metric problems solved by the dot product	conversation, dialog, problem-solving strategies			
3. Problems involving areas	conversation, dialog, problem-solving strategies			
4. Problems solved by translation	conversation, dialog, problem-solving strategies			
5. Problems solved by symmetry	conversation, dialog, problem-solving strategies			
6. Problems solved by homothety	conversation, dialog, problem-solving strategies			
7. Problems solved by inversion	conversation, dialog, problem-solving strategies			
8. Metric problems solved by the real product	conversation, dialog, problem-solving strategies			
9. Written paper	conversation, dialog, problem-solving strategies			
10. Problems involving areas solved by the				
complex product			\quad	conversation, dialog,
:---				
problem-solving				
strategies	,	conversation, dialog,		
:---				
problem-solving				
strategies	,			

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program
1) The contents is directed towards applications of the methods of Geometry to mathematical didactics and problem solving.
2) Most of the topics in the course are included in the national curriculum and are necessary for various exams for teachers in general schools and high schools.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (\%)
10.4 Course	To understand the notions and the results by typical examples or counterexamples. To be able to present the main ideas in the proof of the theoretical results.	Written exam	60%
	To develop a specific subject by reading the bibliography.	Report	10%
10.5 Seminar/lab activities	Solving problems skills	Quiz Continous observations	10%

Date
18.04.2018

Prof. Dr. Dorin Andrica
Signature of seminar coordinator
Prof. Dr. Dorin Andrica

Date of approval
21.04.2018

Signature of the head of department
Prof. Dr. Octavian Agratini

