SYLLABUS

${\bf 1.}\ Information\ regarding\ the\ programme$

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science/ Applied Computational Intelligence
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Introduction to Natural Language Processing							
2.2 Course coordinator Lecturer Ph.D. Lupea Mihaiela							
2.3 Seminar coordinator				Lecturer Ph.D. Lupea Mihaiela			
2.4. Year of	3	2.5	2	2.6. Type of	C	2.7 Type of	optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar/laboratory	1 lab
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6 seminar/laboratory	12
Time allotment:					
Learning using manual, course su	pport	, bibliography, course	notes		10
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					15
Tutorship					4
Evaluations					10
Practical project					15
3.7 Total individual ctudy hours 64					

3.7 Total individual study hours	64
3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	Formal languages, Data structures, Graphs Algorithms
4.2. competencies	Programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	Laboratory with computers; high level programming language
activities	environment (.NET or any Java environment a.s.o.)

6. Specific competencies acquired

Professional competencies Assimilation of mathematical concepts and formal models to understand, verify and validate software systems; Advanced ability to approach, model and solve phenomena and problems from natural language and economy using fundamental knowledge from mathematics and computer science; Ability to approach and solve complex problems using various techniques of computational intelligence; Proficient use of methodologies and tools specific to programming languages and software systems. Etic and fair behavior, committment to professional deontology Team work capabilities; able to fulfill different roles competencies **Transversal** Professional communication skills; concise and precise description, both oral and written, of professional results, negociation abilities; Antepreneurial skills; working with economical knowledge; continuous learning Good English communication skills

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To introduce the basic principles, domains and tasks in Natural Language Processing (NLP) To understand the current state of the art in order to realize an overview of a specific domain in NLP and to implement a NLP tool.
7.2 Specific objective of the discipline	Apply and use formal models (logics, grammars, parsing), statistic models (HMM), artificial intelligence algorithms and techniques to solve different tasks at the syntactic level (POS-tagging, parsing, chunking), and semantic level (word sense disambiguation, document summarization, anaphora resolution) in Natural Language Processing domain.

8. Content

8.1 Course	Teaching methods	Remarks
Course 1.	Exposure: description,	
Natural Language Processing (NLP): stages, domains,	explanation, examples,	
applications.	debate, dialogue	
**		
Course 2.	Exposure: description,	
-WordNet and RoWordNet - knowledge structure, semantic	explanation, examples,	
relations, lexical relations.	debate, dialogue	
- WordNetSimilarity tool and similarity measures for words.		
Course 3. Part of speech tagging.	Exposure: description,	
- part-of-speech tagging in English.	explanation, examples,	
- part-of-speech tagging in Romanian	debate, dialogue	
Course 4. Syntactic parsing	Exposure: description,	
- grammar rules for English - sentence level construction;	explanation, examples,	
- Cocke-Kasami-Yonger (CKY) algorithm;	debate, dialogue	

Course 5. Statistical parsing	Exposure: description,	
- Probabilistic Context-Free Grammars (PCFG);	explanation, examples,	
- Probabilistic CKY (Cocke-Kasami-Yonger) parsing of	debate, dialogue	
PCFGs.		
Course 6. Hidden Markov Model	Exposure: description,	
- Markov chains, Hidden Markov Model(HMM);	explanation, examples,	
- three canonical problems associated with HMM	debate, dialogue	
- the forward algorithm; Viterbi algorithm.		
Course 7. Word Sense Disambiguation	Exposure: description,	
- dictionary and graph-based approaches.	explanation, examples,	
	debate, dialogue	
Course 8. Document summarization	Exposure: description,	
- approaches based on clustering, graphs.	explanation, examples,	
	debate, dialogue	
Course 9. Anaphora resolution	Exposure: description,	
- Lapin and Lease algorithm	explanation, examples,	
- Mitkov's algorithm	debate, dialogue	
Course 10. Sentiment analysis	Exposure: description,	
- opinion mining in social media	explanation, examples,	
- emotion analysis in literature	debate, dialogue	
Course 11. Textual entailment	Exposure: description,	
	explanation, examples,	
	debate, dialogue	
Course 12. Written exam	Exposure: description,	
	explanation, examples,	
	debate, dialogue	

Bibliography

- 1. J.ALLEN: Natural language understanding, Benjamin/Cummings Publisher, 2nd ed., 1995.
- 2. E. CHARNIAK: Statistical language learning, MIT press, 1996.
- 3. B.CARPENTER: ALE: The attribute logic engine. User's guide. Carnegie Mellon University, 1994.
- 4. D.FEHRER et al: Description logics for natural language processing. In Proc. of the 1994 Description Logic Workshop (DL'94), 1994.
- 5. H. HELBIG: Knowledge Representation and the Semantics of Natural Language, Springer, 2006.
- 6. D.JURAFSKY, J.MARTIN: Speech and language processing, Prentice Hall, 2000.
- 7. C.MANNING, H.SCHUTZE: Foundation of statistical natural language processing, MIT, 1999.
- 8. R. MITKOV(ed): The Oxford Handbook of Computational Linguistics, Oxford University Press, 2003.
- 9. D.TATAR: Inteligenta artificiala: demonstrare automata de teoreme, prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2001.
- 10. D. TATAR: Inteligenta artificiala. Aplicatii in prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2003, ISBN 973-650-100-01.

8.2	2 Seminar / laboratory	Teaching methods	Remarks
1.	Working with WordNet, Romanian WordNet and	Explanation,	The seminar/lab is
	WordNetSimilarity.	dialogue, case studies	structured as 2 hours
			classes every second week
2.	Working with dedicated parsers and taggers	Explanation,	
	(Stanford, CST tools, Racai tools)	dialogue, case studies	
3.	Students' presentations of a NLP domain and a corresponding tool.	Dialogue, debate	
4.	Students' presentations of a NLP domain and a corresponding tool.	Dialogue, debate	

5.	Working with dedicated tools for summarization, anaphora, co-reference resolution, sentiment analysis.	Explanation, dialogue, case studies	
6.	Students' presentations of the practical projects.	Dialogue, debate	

Bibliography

- 1. Rada Mihalcea: www.cs.unt.edu/~rada/downloads.html
- 2. Resurse lingvistice in limba romana: www.racai.ro

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The optimization of the search on Web, the interfaces in natural language and the recent aspects of text mining need a good understanding of Natural Language Processing.

10. Evaluation

Date

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course	- know the theoretical concepts of the domain;	Written exam	20%		
10.5 Seminar/lab activities	- know to write an overview of a specific domain	Presentation of a NLP domain and a corresponding tool.	40%		
	- be able to implement course algorithms	Practical project - implementation of a NLP tool based on the studied methods. Teams of 2-3 students	40%		
10.6 Minimum performance standards					
The final grade to be at least 5 (from a scale of 1 to 10).					

Bute	Signature of course coordinate	bignature of seminar coordinator
22.04.2018	Lecturer Ph.D. Lupea Mihaiel	a Lecturer Ph.D. Lupea Mihaiela
Date of approval		Signature of the head of department
		Prof. Ph.D. Andreica Anca

Signature of seminar coordinator

Signature of course coordinator