
SYLLABUS

1. Information regarding the programme
1.1 Higher education
institution

Babes-Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science
1.3 Department Department of Computer Science
1.4 Field of study Computer Science
1.5 Study cycle Bachelor
1.6 Study programme /
Qualification

Computer Science

2. Information regarding the discipline
2.1 Name of the discipline Virtual Machines: Design and Implementation
2.2 Course coordinator Assoc. Prof. Ing. Florin Craciun
2.3 Seminar coordinator Assoc. Prof. Ing. Florin Craciun
2.4. Year of study 3 2.5 Semester 6 2.6. Type of evaluation E 2.7 Type of

discipline
Optional

3. Total estimated time (hours/semester of didactic activities)
3.1 Hours per week 4 Of which: 3.2 course 2 3.3

seminar/laboratory
1lab +
1pr

3.4 Total hours in the curriculum 48 Of which: 3.5 course 24 3.6
seminar/laboratory

24

Time allotment: hours
Learning using manual, course support, bibliography, course notes 20
Additional documentation (in libraries, on electronic platforms, field documentation) 10
Preparation for seminars/labs, homework, papers, portfolios and essays 77
Tutorship 10
Evaluations 10
Other activities: -
3.7 Total
individual
study hours

127

3.8 Total hours
per semester

175

3.9 Number of
ECTS credits

7

4. Prerequisites (if necessary)
4.1. curriculum Fundamentals of Programming, Algorithms and Data

Structures, Object-Oriented Programming, Advanced
Programming Methods, Logic and Functional Programming

4.2. competencies Basic knowledge in Python, Java, C#, C++

5. Conditions (if necessary)

5.1. for the course Projector for lecture presentations

5.2. for the seminar /lab
activities

Computers for practical assignments

6. Specific competencies acquired

Professional
competencies

 Good programming skills in high-level languages
 Better understanding of the program execution
 Ability to design and implement DSL (Domain Specific Languages)
 Better knowledge about program semantics
 Better knowledge about automated program verification
 Better knowledge about writing correct code
 Better knowledge about code optimization

Transversal
competencies

 Ability to design and build dependable software systems
 Ability to design and build critical systems

7. Objectives of the discipline (outcome of the acquired competencies)
7.1 General objective of the
discipline

 Understanding of the main concepts and techniques to design and
implement a language interpreter (virtual machine)

7.2 Specific objective of the
discipline

 To understand the execution model of a program

 To understand the automated program analyse

 To understand how an interpreter (virtual machine) works

 To understand how to implement a DSL

 To understand the automated techniques to optimized the program

 To understand the automated program verification

 To become familiar with the tools which automatically analise,
optimize and verify the programs

8. Content
8.1 Course Teaching methods Remarks
1. Introduction into code interpretation. Exemple of
virtual machine: Java VM, .NET CLI, SECD
machine, WAM machine.

 Interactive
exposure

 Explanation
 Conversation
 Didactical

demonstration
2. Principles of declarative programming. Basics of Interactive exposure

OCaml language. Explanation
 Conversation
 Didactical

demonstration
3. Practical OCaml programming Interactive exposure

 Explanation
 Conversation
 Didactical

demonstration
4. Operational semantics. Exemples for a simple
imperative language and a simple object-oriented
language

 Interactive exposure
 Explanation
 Conversation
 Didactical

demonstration
5. Static semantics. Type systems for a simple
imperative language and a simple object-oriented
language.

 Interactive exposure
 Explanation
 Conversation
 Didactical

demonstration
6. Symbolic execution of a program. Program
representations: abstract syntax tree vs control flow
graph

 Interactive exposure
 Explanation
 Conversation
 Didactical

demonstration
7. Domain Specific Languages: design and
implementation

 Interactive exposure
 Explanation
 Conversation
 Didactical

demonstration
8. DataFlow Analyses for code optimization Interactive exposure

 Explanation
 Conversation
 Didactical

demonstration
9. DataFlow Analyses for code verification Interactive exposure

 Explanation
 Conversation
 Didactical

demonstration
10. ControlFlow Analyses Interactive exposure

 Explanation
 Conversation
 Didactical

demonstration
11. Pointer Analyses Interactive exposure

 Explanation
 Conversation
 Didactical

demonstration
12. Code genration vs code interpretation Interactive exposure

 Explanation
 Conversation

 Didactical
demonstration

13. Code verification using Separation Logic Interactive exposure
 Conversation

14. Code verification using Separation Logic Interactive exposure
 Conversation

Bibliography

1. F. Nielson, H.R. Nielson, C. Hankin, Principles of Program Analysis

2. OCAML handbook. http://caml.inria.fr/pub/docs/manual-ocaml/

3. A. Appel. Modern compiler implementation in Java

4. A. Appel. Modern compiler implentation in ML

5. Benjamin Pierce. Types and Programming Languages

8.2 Seminar / laboratory Teaching methods Remarks
1. Principles of declarative programming.

Learning OCAML language by examples
Conversation, debate,
case studies, examples

The laboratory is
structured as 2 hours
classes every second
week

2. Initiate the project: design and
implementation of an interprete for an OO
language in Ocaml. Design the language and
generate its AST.

3. Implemetation: Operational Semantic and
Symbolic Execution

4. Implementation: Type System
5. Implementation: DataFlow Analyses
6. Implementation: ControlFlowAnalyses
7. Implementation: Modular Verification of the

code

Bibliography

The latest academic tools open source. The students will be able to change/adapt the tools.

9. Corroborating the content of the discipline with the expectations of the epistemic community,
professional associations and representative employers within the field of the program

• The course respects the IEEE and ACM Curriculla Recommendations for Computer Science
studies

• The content of the course is considered by the software companies as important for average
software development skills

10. Evaluation

Course - know the basic
principle of

 the domain;

 - apply the course
concepts problem
solving

Written Final Exam 30.00%

Seminar/lab activities - be able to use course
 concepts in solving

the real problems

Laboratory Project 70.00%

 At least grade 5 (from a scale of 1 to 10) at written final exam and at each laboratory assignment.

Date Signature of course coordinator Signature of seminar coordinator

 Assoc. Prof. Florin Craciun Assoc. Prof. Florin Craciun

 Date of approval Signature of the head of department

