SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the disc	ipline (en)	Software Systems Verification and Validation				on
(ro)						
2.2 Course coordinate	tor	PhD Associate Professor Vescan Andreea				
2.3 Seminar coordinator			PhD Associate Professor Vescan Andreea			
2.4. Year of study 3	2.5 Semester	6	2.6. Type of evaluation	E	2.7 Type of discipline	compulsory
2.8 Code of the discipline	MLE5014			•		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	48	Of which: 3.5 course	24	3.6	24
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes				22	
Additional documentation (in libraries, on electronic platforms, field documentation)				22	
Preparation for seminars/labs, homework, papers, portfolios and essays				22	
Tutorship				3	
Evaluations				8	
Other activities:				0	
0.7.5 . 11 11 1 1 1 1					

3.7 Total individual study hours	77
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	 Object oriented programming, Advanced programming
	methods, Systems for design and implementation, Web

	Programming
4.2. competencies	 Skills in highlevel object oriented programming environments

5. Conditions (if necessary)

5.1. for the course	Video projector, Internet access
5.2. for the seminar /lab	 Laboratory with computers; various tools for verification activities
activities	

6. Specific competencies acquired

of Speem	te competencies acquired
Professional competencies	 Identification of proper methodologies for software systems development; Identification and explication of proper software systems specification methods; Using methodologies and tools for development of informatics applications; Using proper criteria and methods for evaluation of software applications; Realization of dedicated information projects.
Transversal competencies	 Application of efficient and rigorous working rules, manifest responsible attitudes toward the scientific and didactic fields, respecting the professional and ethical principles. Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication in Romanian as well as in a widely used foreign language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To gain knowledge of partial correct and total correct algorithms To gain knowledge of designing correct algorithms and proving the correctness hand-in-hand; To learn the methods of program verification and validation; To become used with building correct programs from specification; To develop a modern programming style.
7.2 Specific objective of the discipline	 Students will know how and which are the steps of an inspection, either of the source code or specification of each stage of the development of the software system. Students will know to create test cases from the specification and from source code, that will help them develop a better and robust software system. Students will know how to use tools for the management of testing process. Students will know how to design test cases using various criteria (black-box, white-box).

8. Content

8.1 Course	Teaching methods	Remarks
1. Verification and validation.	Interactive exposure	
Program inspection	Explanation	

	Conversation
	Didactical demonstration
2. Program testing (1): script testing versus	Interactive exposure
exploratory testing	Explanation
	Conversation
	Didactical demonstration
3. Program testing (2): the concept of program	Interactive exposure
testing; unit testing: testing criteria – black box	Explanation
testing, testing criteria – white box testing	Conversation
(cont.)	Didactical demonstration
4. Program testing (3): Levels of testing (unit,	Interactive exposure
integration, system, regression, acceptance)	Explanation
	Conversation
	Didactical demonstration
5. Testing Web applications	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
6. Symbolic execution	Interactive exposure
	Explanation Explanation
	Conversation
	Didactical demonstration
7. The theory of program correctness.	Interactive exposure
The evolution of the concept of program	Explanation Explanation
correctness.	Conversation
Floyd's method for prooving correctness.	Didactical demonstration
Hoare's axiomatisation method	Didactical demonstration
Dijkstra: the weakest precondition.Stepwise	
refinement from specifications	
Termement from specifications	
8. Agile testing	Interactive exposure
8. Agne testing	Explanation
	Conversation
0 Model abacking	Didactical demonstration
9. Model checking	Interactive exposure
	Explanation
	Conversation
10 D 0 11 00 1 00 1	Didactical demonstration
10. Program Quality, SQA,CMM SPI,	Interactive exposure
Cleanroom	Explanation
	Conversation
	Didactical demonstration
11. Security testing	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
12. Verification/testing related activities:	Interactive exposure
Technical testing skills, Soft testing skills,	Explanation
Giving, feedback. This activity is done in	Conversation
collaboration of the teacher with the students.	Didactical demonstration
Final exam preparation.	
	,

Bibliography

Books

[Fre10] FRENTIU, M., Verificarea si validarea sistemelor soft, Presa Universitara Clujeana, 2010 [Pres10] R. S. Pressman, Software engineering: a practinioner's approach, seventh edition, Higher

Education, 2010

[Crs09] L. Crispin, J. Grecory, Agile testing: a practical guide for testers and agile teams, Addison-Wesley, 2009

[You08] M. Pezzand, M. Young, Software Testing and Analysis: Process, Principles and Techniques, John Wiley & Sons, 2008

[Nai08] K. Naik, P. Tripathy, Software testing and quality assurance. Theory and Practice, A John Wiley & Sons, Inc., 2008

[Kat08] J. P. Katoen, Principles of Model Checking, MIT Press, May 2008

[Pat05] R. Patton, Software Testing, Sams Publishing, 2005

[Mye04] Glenford J. Myers, The Art of Software Testing, John Wiley & Sons, Inc., 2004

[Brn02] I. Brnstein, Practical software testing, Springer, 2002

[Mor90] Morgan, C., Programing from Specifications, Prentice Hall, New York, 1990.

[Dro89] DROMEY G., Program Derivation. The Development of Programs From Specifications, Addison Wesley Publishing Company, 1989.

Articles

[Kin75] J. Darringer, J. King, Applications of symbolic execution to program testing, 1975

[Dij75] DIJKSTRA, E., Guarded commands, nondeterminacy and formal derivation of programs, CACM, 18(1975), 8, pg.453-457.

[Hoa69] HOARE, C.A.R., An axiomatic basis for computer programming, CACM, 12(1969), pg.576-580, 583.

Tutorials

During lectures/seminars/laboratories tutorials will be given for each assignment.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Seminar 1/Laboratory 1	Presentation, Conversation,	
Inspection	Problematizations, Discovery,	
Inspection tool	Other methods – individual	
Issue traker tool	study, exercises	
Test management tool (TestLink)		
2. Seminar 2/Laboratory 2	Presentation, Conversation,	
Test cases using Black-box Testing (BBT)	Problematizations, Discovery,	
Test cases using White-box Testing (WBT)	Other methods – individual	
Test management tool (TestLink)	study, exercises	
Continuous Integration tool (Jenkins)		
3. Seminar 3/Laboratory 3	Presentation, Conversation,	
Levels of testing - Integration testing	Problematizations, Discovery,	
Test management tool (TestLink)	Other methods – individual	
Continuous Integration tool (Jenkins)	study, exercises	
4. Seminar 4/Laboratory 4	Presentation, Conversation,	
Security testing	Problematizations, Discovery,	
Test AI/Machine Learning applications	Other methods – individual	
	study, exercises	
5. Seminar 5/Laboratory 5	Presentation, Conversation,	
Web testing	Problematizations, Discovery,	
Web testing tool (e.g. Selenium Web Driver)	Other methods – individual	

Test management tool (TestLink)	study, exercises
Continuous Integration tool (Jenkins)	
6. Seminar 6/Laboratory 6	Presentation, Conversation,
Correctness. Static analysis	Problematizations, Discovery,
ESCJava2, JML	Other methods – individual
	study, exercises

Bibliography

See references from Lectures.

Remark. For each seminar, students must be prepared. Various articles/chapters from books are required to be read previous to each seminar.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Students will know how to use tools for test management
- Students will know how to apply testing methods for a software product.
- Students will learn various verification and validation methods of a software system, to design test cases using various criteria (black-box testing, white-box testing)

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	At the end of the semester a written examination will give a mark E.	Written examination	50%
	During lectures hours, two quizzes are given. The mark Q is given.	Two quizzes examination during lectures hours	10%
10.5 Seminar/lab activities	The activity at seminaries, consisting from participation in solving the exercises and discussions will be appreciate by a mark S.	Seminar = Grade for seminar Activity	20%
	The activity at laboratories, consisting from participation in solving the exercises and discussions, will be appreciate by a mark L.	Laboratory activity	20%
10.6. Bonus point	Students will have the possibility of obtaining bonus points at the final grade for additional	Bonus point (1 point)	1 maximal point at the final grade (after obtaining the final minimum required

activities that are related to	grade 5).
Software systems	
verification and validation:	
conduction research/report	
and various activities	
during lectures.	
An R&D project could	
also be selected.	

Remark.

- Seminar/Laboratory assignments/Practical laboratory work may not be redone in the retake session.
- Written exams can be taken during the retake session.
- Students from Previous Years to 2018-2019
 - o All the above rules apply to students from previous years.
 - o Seminar/Laboratory assignments and practical laboratory activity must be redone during didactic activity time (in the 12 weeks before normal session).
- Laboratory activity: each student will come with it own semi-group.
- Laboratory activity: 3 out of 6 laboratories must be delivered.
- Late delivery of assignments will be penilized. Maximum 4 weeks are allowed to deliver an assignment. After the deadline, the assignment will be graded with 0.
- The final grade computed with the given formula must be at least 5 in order to pass the exam. Final grade=50%WrittenExam+10%Quizes+20%Seminar+20%Laboratory
- Attend 75% of seminar activities during semester AND attend 90% of lab activities during semester.

10.6 Minimum performance standards

- > Students will learn and apply testing methods for a software product.
- > Students will apply various methods for verification (testing, inspection, model checking) for establishing the correctness of an algorithm.

Date	Signature of course coordinator	Signature of seminar coordinator		
18 April 2018	Ass. Prof. PhD. Andreea Vescan,	Ass. Prof. PhD. Andreea Vescan		
Date of approval	Signature	Signature of the head of department		
	Pro:	Prof. PhD. Anca Andreica		