SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Numerical Calculus							
2.2 Course coordinator Assoc. Prof. Teodora Catinas							
2.3 Seminar coordinator				Assoc. Prof. Teodora Catinas			
2.4. Year of	3	2.5	6	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2 lab
				seminar/laboratory	
3.4 Total hours in the curriculum	48	Of which: 3.5 course	24	3.6	24
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship				7	
Evaluations				20	
Other activities:				-	

3.7 Total individual study hours	77
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	Knowledge of main notions and procedures of numerical analysis and
	the ability to work with them. Programming skills in MATLAB
	for implementing numerical algorithms.

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab activities	Laboratory with computers.

6. Specific competencies acquired

	_	C3.1 Description of concepts, theory and models used in application domain
		C3.2 Identify and explain the basic computer science models corresponding to application
_	_ x	domain
1	r rotessional competencies	C3.3 Use of computer science and mathematical models and tools for solving specific problems
• !	sio	in the application field
r,	pel	C3.4 Data and model analysis
	om	C4.1 Defining basic concepts, theory and mathematical models
-	1 5	C4.2 Interpretation of mathematical models
		C4.3 Identifying the appropriate models and methods for solving real-life problems
		C4.5 Embedding formal models in applications from various areas
		CT1 Application of efficient and organized work rules, of responsible attitudes towards the
-	ies	didactic-scientific domain, to creatively value one's own potential, with the respect towards the
	rsa	principles and norms of professional etic.
	ete	CT3 Use of efficient methods and techniques to learn, inform, research and develop the abilities
	np	to value the knowledge, to adapt to requirements of a dynamic society and to communicate in
E	11. COL	Romanian language and in a language of international circulation.
	competencies	principles and norms of professional etic. CT3 Use of efficient methods and techniques to learn, inform, research and develop the abilities to value the knowledge, to adapt to requirements of a dynamic society and to communicate in

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Be able to understand and use basic concepts of Numerical Analysis Be able to implement numerical algorithms in order to solve practical problems.
7.2 Specific objective of the discipline	 Acquire theoretical and practical knowledge about the basic numerical algorithms regarding approximation of functions, numerical integration of functions, numerical solving of linear/nonlinear systems of equations and differential equations. Ability to apply numerical algorithms to solve practical and real life problems.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introductive notions. Finite and divided	Exposure: description,	
differences (definitions and properties).	explanation, examples.	
Taylor's formula.		
2. Lagrange interpolation: interpolation	Exposure: description,	
polynomial, interpolation formula, study of	explanation, examples,	
the error.	proofs.	
3. Lagrange interpolation: Aitken's algorithm	Exposure: description,	
and Newton's formula.	explanation, examples.	
4. Hermite interpolation: interpolation	Exposure: description,	
polynomial, interpolation formula, study of	explanation, examples,	
the error. Hermite interpolation with double	proofs.	
nodes.		
5. Birkhoff interpolation: interpolation	Exposure: description,	
polynomial, interpolation formula, study of	explanation, examples,	
the error. Least squares approximation.	proofs.	
6. Numerical differentiation and integration	Exposure: description,	
(introductive notions). Newton-Cotes	explanation, examples,	
quadrature formulas. Repeated quadrature	proofs, dialogue.	
formulas.		

7. Romberg's algorithm. Adaptive quadratures	Exposure: description,
formulas. General quadrature formulas.	explanation, examples.
Gauss-type quadrature formulas.	
8. Numerical methods for solving linear systems	Exposure: description,
- direct methods (Gauss, Gauss-Jordan, LU-	explanation, examples.
methods). Conditioning of a linear system.	
9. Numerical methods for solving linear systems	Exposure: description,
- iterative methods (Jacobi, Gauss-Seidel,	explanation, examples.
SOR).	
10. Methods for solving nonlinear equations in R:	Exposure: description,
one-step methods (Newton (tangent) method)	explanation, examples.
and multi-step methods (secant, bisection and	
false position methods).	
11. Methods for solving nonlinear equations in R:	Exposure: description,
Lagrange, Hermite and Birkhoff inverse	explanation, examples,
interpolation. Methods for solving nonlinear	proofs.
systems: successive approximation and	
Newton methods.	
12. Numerical methods for solving differential	Exposure: description,
equations: Taylor interpolation, Euler and	explanation, examples.
Runge-Kutta methods.	

Bibliography

- **1.** O. Agratini, I. Chiorean, Gh. Coman, R.T. Trîmbitaş, *Analiză Numerică și Teoria Aproximării*, vol. III, Ed. Presa Univ. Clujeană, 2002;
- 2. R. L. Burden, J. D. Faires, Numerical Analysis, PWS Publishing Company, 1985.
- 3. I. Chiorean, T. Cătinaș, R. Trîmbitaș, Analiză numerică, Ed. Presa Univ. Clujeană, 2010.
- **4.** Gh. Coman, T. Cătinaș, și alții, *Interpolation operators*, Ed. Casa Cărții de Știință, Cluj-Napoca, 2004.
- **5.** Gh. Coman, I. Chiorean, T. Cătinaș, *Numerical Analysis. An Advanced Course*, Ed. Presa Univ. Clujeană, 2007.
- **6.** S. D. Conte, Carl de Boor, *ELEMENTARY NUMERICAL ANALYSIS. An Algorithmic Approach*, SIAM, 2017.
- 7. W. Gander, M.J. Gander, F. Kwok, Scientific Computing, Springer Internat. Publishing, 2014.
- **8.** D.D. Stancu, Gh. Coman, O. Agratini, R. Trimbitas, *Analiză Numerică și Teoria Aproximării*, vol. I, Ed. Presa Univ. Clujeană, 2001;
- **9.** D.D. Stancu, Gh. Coman, P. Blaga, *Analiză Numerică și Teoria Aproximării*, vol. II, Ed. Presa Univ. Clujeană, 2002;
- 10. R. Trîmbitaş, Numerical Analysis, Ed. Presa Univ. Clujeană, 2007.

8.2 Laboratory	Teaching methods	Remarks
Introductory examples and problems in Matlab.	Explanation, dialogue.	
 Problems with orthogonal polynomials and Taylor polynomials. Computation of finite and divided differences. 	Explanation, dialogue, examples.	
3. Lagrange interpolation. Computation of Lagrange polynomial using barycentric formula.	Explanation, dialogue, practical examples.	
4. Applied problems to Lagrange interpolation using Aitken's algorithm and Newton's method.	Explanation, dialogue, practical examples. Evaluation.	
5. Applied problems to Hermite interpolation.	Explanation, dialogue, practical examples. Evaluation.	

6. Applied problems to least squares approximation method.	Explanation, dialogue, practical examples. Evaluation.
7. Problems with simple and repeated integration formulas and with Romberg's algorithm.	Explanation, dialogue, practical examples.
8. Applied problems to Gauss type quadrature formulas and adaptive quadratures.	Explanation, dialogue, examples. Evaluation.
9. Solving linear systems using direct methods. Study of perturbations of a linear system.	Explanation, dialogue, examples.
10. Solving linear systems using iterative methods.	Explanation, dialogue, examples. Evaluation.
11. Solving nonlinear equations using Newton, secant and bisection methods.Solving nonlinear systems using Newton's method.	Explanation, dialogue, practical examples. Evaluation.
12. Solving some differential equations using Euler and Runge-Kutta methods. Ending of evaluation for laboratories	Explanation, dialogue, practical examples. Evaluation.

Bibliography

- 1 R. L. Burden, J. D. Faires, *Numerical Analysis*, PWS Publishing Company, 1985.
- A. Kharab, R. B. Guenther, An introduction to numerical methods. A Matlab approach, Taylor&Francis Group, 2006.
- 3 R. Trîmbitaş, *Numerical Analysis*, Ed. Presa Univ. Clujeană, 2007.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course is important for seeing the application of mathematical knowledge in solving practical and real life problems.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the basic principles of Numerical Analysis; apply the course concepts problem solving 	Written exam	70%
10.5 Seminar/lab activities	 be able to implement course concepts and algorithms apply techniques for different practical problems 	Evaluation and continuous observations during the semester.	30%
10.6 Minimum performance standards			

At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.

Date

Signature of course coordinator

Signature of seminar coordinator

18.04.2018

Date of approval

Signature of the head of department