

SYLLABUS

1. Information regarding the programme

1.1 Higher education

institution

Babeș Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Department Department of Computer Science

1.4 Field of study Computer Science

1.5 Study cycle Bachelor

1.6 Study programme /

Qualification

Computer Science

2. Information regarding the discipline

2.1 Name of the discipline (en)

(ro)

Parallel and Distributed Programming

Programare Paralelă și Distribuită

2.2 Course coordinator Lect. PhD. Radu Lupșa

2.3 Seminar coordinator Lect. PhD. Radu Lupșa

2.4. Year of study 3 2.5 Semester 5 2.6. Type of

evaluation

E 2.7 Type of

discipline

Compulsory

2.8 Code of the

discipline

MLE5077

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week 6 Of which: 3.2 course 2 3.3 seminar/laboratory 1/2/1

3.4 Total hours in the curriculum 84 Of which: 3.5 course 28 3.6 seminar/laboratory 56

Time allotment: hours

Learning using manual, course support, bibliography, course notes 15

Additional documentation (in libraries, on electronic platforms, field documentation) 10

Preparation for seminars/labs, homework, papers, portfolios and essays 21

Tutorship 10

Evaluations 10

Other activities: -

3.7 Total individual study hours 66

3.8 Total hours per semester 150

3.9 Number of ECTS credits 6

4. Prerequisites (if necessary)

4.1. curriculum Programming Fundamentals, Object Oriented Programming,

Data Structures and Algorithms, Operating Systems

4.2. competencies Programming abilities

5. Conditions (if necessary)

6. Specific competencies acquired

P
ro

fe
ss

io
n

a
l

co
m

p
et

en
ci

es
 The student should prove that he has a good level of knowledge understanding of the field

and he is capable of showing the knowledge and can use them in problem solving using

parallel and distributing programming.

T
ra

n
sv

er
sa

l

co
m

p
et

en
ci

es

CT1 Application of organized and efficient work rules, of responsible attitudes towards the

didactic and scientific domain, for the creative exploitation of their own potential according

to the principles and rules of professional ethics

CT3 Use of effective methods and techniques of learning, information, research and

development of the capacity to exploit knowledge, to adapt to the requirements of a

dynamic society and communication in Romanian language and in a foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course Teaching methods Remarks

1. General introduction:

 necessity to use parallelism

 concurrent vs. parallel vs.

distributed computing

 levels of parallelism

Exposition, concepts,

examples, case study.

2. Parallel architectures:

 Pipeline

Exposition, concepts,

examples, case study.

5.1. for the course Lecture room with videoprojector

5.2. for the seminar /lab

activities

 Laboratory with workstations

7.1 General objective of the

discipline

 Aquire the main concepts of concurrent, parallel and distributed

programming;

 Basics of communication between processes and threads, on the same

machine or on distinct machines;

 Knowing basic techniques of parallel programming;

 Knowing and using parallel application design patterns

 Knowing and using the existing frameworks for developing parallel

and distributed applications

7.2 Specific objective of the

discipline

 Parallel architectures and parallel programming systems

 Know how to use parallel programming techniques in problem solving

 Know how to evaluate the performance increase obtained by

parallelization

 Ability to work independent or in a team in order to solve problems in

a parallel and/or distributed context

 Vectorial machines

 Grid and cluster computers

 Supercomputers

3. :

 Processes vs threads

 Managing the processes/threads

Exposition, concepts,

examples, case study.

4. Concurrency concepts:

 race conditions, critical sections,

mutual exclusion, deadlock

 synchronizations: monitors,

semaphores

Exposition, concepts,

examples, case study.

5. Models of parallelism:

 Implicit vs. explicit parallelism

 data parallelism

 message-passing

 shared memory

Exposition, concepts,

examples, case study.

6. Parallel programming in shared memory: C

pthreads, C++ threads, Java threads, OpenMP

Exposition, concepts,

examples, case study.

7. Performance evaluation for parallel programs:

PRAM (Parallel Random Access Machine).

Efficiency, cost, scalability.

Exposition, concepts,

examples, case study.

8. Parallel programming patterns:

 master-slaves

 task farm / work pool

 divide et impera

 pipeline

Exposition, concepts,

examples, case study.

9. Message passing parallel programs. MPI Exposition, concepts,

examples, case study.

10. Phases in a parallel program: PCAM (Partition,

Communication, Aggregation, Mapping):

 task decomposition

 domain (geometrical) decomposition

 granularity

 degree of parallelism

 task dependency

Exposition, concepts,

examples, case study.

11. Parallel programs construction techniques:

 divide et impera

 binary tree

 recursive double-back

Exposition, concepts,

examples, case study.

12. Data parallel programming Exposition, concepts,

examples, case study.

13. GPGPU (General Processing on the Graphical

Processing Unit): OpenCL, CUDA

Exposition, concepts,

examples, case study.

14. Distributed file systems Exposition, concepts,

examples, case study.

Bibliography

http://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/

1. Ian Foster. Designing and Building Parallel Programs, Addison-Wesley 1995.

2. Michael McCool, Arch Robinson, James Reinders, Structured Parallel Programming: Patterns for

Efficient

Computation,” Morgan Kaufmann,, 2012 .

3. Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders,Addison A Pattern Language for

Parallel

Programming. Wesley Software Patterns Series, 2004.

4. Grama, A. Gupta, G. Karypis, V. Kumar. Introduction to Parallel Computing, Addison Wesley, 2003.

5. D. Grigoras. Calculul Paralel. De la sisteme la programarea aplicatiilor. Computer Libris Agora, 2000.

6. V. Niculescu. Calcul Paralel. Proiectare si dezvoltare formala a programelor paralele. Presa Univ.

Clujana, 2006.

7. D.B. Skillicorn, D. Talia. Models and Languages for Parallel Computation. ACM Computer Surveys,

30(2) pg.123-136,

June 1998.

8. B. Wilkinson, M. Allen, Parallel Programming Techniques and Applications Using Networked

Workstations and Parallel

Computers, Prentice Hall, 2002

9. E.F. Van de Velde. Concurrent Scientific Computing. Spring-Verlag, New-York Inc. 1994.

10. Boian F.M. Ferdean C.M., Boian R.F., Dragos R.C. Programare concurenta pe platforme Unix,

Windows, Java. Ed.

Albastra, grupul Microinformatica, Cluj, 2002 .

11. ***, OpenMP Tutorials

12. ***, MPI Tutorials

13. ***, CUDA Tutorials

8.2 Seminar / laboratory Teaching methods Remarks

 S1 Threads vs processes

 S2 Concurrent programming

 S3 OpenMP

 S4 Parallel design patterns

 S5-S6 MPI

 S7 CUDA/OpenCL

 L1 Threads vs processes

 L2-L5 Concurrent programming C++, Java, C#

 L6-L7 OpenMP

 L8-L10 MPI

 L11-L14 CUDA/OpenCL

Bibliography

1. Eckel, B., Thinking in Java, 4th Edition, New York: Prentice Hall, 2006.

2. Larman, C.: Applying UML and Design Patterns: An Introduction to OO Analysis and Design, Berlin:

Prentice Hall,

2004.

3. Fowler, M., Patterns of Enterprise Application Architecture, Addison-Wesley, 2002.

4. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns – Elements of Reusable Object Oriented

Software, Ed.

Addison Wesley, 1994.

5. Walls, Craig, Spring in Action, Third Edition, Ed. O’Reilley, 2011.

6. Kent Beck, Test Driven Development: By Example, Ed. Addison-Wesley Professional, 2002.

7. ***, http://download.oracle.com/javase/tutorial/

8. ***, http://msdn.microsoft.com/en-us/library/aa288436%28v=vs.71%29.aspx

9. Corroborating the content of the discipline with the expectations of the epistemic community,

professional associations and representative employers within the field of the program

 The course follows ACM and IEEE recommendations for computer science studies

 The course is part of the curricula in all major universities, both local and abroad

 The software companies consider the course content important for acquiring advanced programming

abilities.

10. Evaluation

Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)

10.4 Course Knowing basic concepts written exam 40%

Applying theoretical

knowledge in problem

solving

project 30%

10.5 Seminar/lab activities Applying theoretical

knowledge in problem

solving

evaluation of lab

assignments

30%

10.6 Minimum performance standards
 At least 4.5 out of 10 for the written exam
 At least 4.5 out of 10 the average

Date Signature of course coordinator Signature of seminar coordinator

..........................

Date of approval Signature of the head of department

... …............................

