

SYLLABUS

1. Information regarding the programme

1.1 Higher education

institution

Babeş Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Department Department of Computer Science

1.4 Field of study Computer Science

1.5 Study cycle Bachelor

1.6 Study programme /

Qualification

Computer Science

2. Information regarding the discipline

2.1 Name of the discipline (en)

(ro)

Pragmatic issues in programming

(Aspecte pragmatice în programare)

2.2 Course coordinator Lect. PhD. Radu Lupsa

2.3 Seminar coordinator Lect. PhD. Radu Lupsa

2.4. Year of study 3 2.5 Semester 5 2.6. Type of

evaluation

C 2.7 Type of

discipline

Optional

2.8 Code of the

discipline

MLE5056

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week 4 Of which: 3.2 course 2 3.3

seminar/laboratory

1L +

1P

3.4 Total hours in the curriculum 56 Of which: 3.5 course 28 3.6

seminar/laboratory

28

Time allotment: hours

Learning using manual, course support, bibliography, course notes 10

Additional documentation (in libraries, on electronic platforms, field documentation) 10

Preparation for seminars/labs, homework, papers, portfolios and essays 20

Tutorship 2

Evaluations 2

Other activities:

3.7 Total individual study hours 44

3.8 Total hours per semester 100

3.9 Number of ECTS credits 4

4. Prerequisites (if necessary)

4.1. curriculum Advanced programming methods

4.2. competencies Average skills in programming.

5. Conditions (if necessary)

6. Specific competencies acquired

P
ro

fe
ss

io
n

a
l

co
m

p
et

en
ci

es
 C2.1 Identificarea de metodologii adecvate de dezvoltare a sistemelor software

C2.3 Utilizarea metodologiilor, mecanismelor de specificare ?i a mediilor de dezvoltare

pentru realizarea aplica?iilor informatice

T
ra

n
sv

er
sa

l

co
m

p
et

en
ci

es

CT1 Aplicarea regulilor de munca organizata si eficienta, a unor atitudini responsabile fata

de domeniul didactic-stiintific, pentru valorificarea creativa a propriului potential, cu

respectarea principiilor si a normelor de etica profesionala

CT3 Utilizarea unor metode si tehnici eficiente de învatare, informare, cercetare si

dezvoltare a capacitatilor de valorificare a cunostintelor, de adaptare la cerintele unei

societati dinamice ?i de comunicare în limba româna ?i într-o limba de circula?ie

interna?ionala

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course Teaching methods Remarks

1. Development speed, long-term versus short-

term speed. Complexity as the main asymptotic

slow-down factor. The role of a disciplined,

systematic approach.

Interactive exposure

Explanation

Conversation

Didactical

demonstration

2. Programming discipline: Tracking changes and

(automated) testing: goals, issues, best

practices.

Interactive exposure

Explanation

Conversation

Didactical

demonstration

3. Programming discipline: One Responsibility

Rule principle, Don’t Repeat Yourself

Interactive exposure

Explanation

5.1. for the course

5.2. for the seminar /lab

activities

 Laboratory with computers; high level programming language

environment (C++, Java, .NET, python)

7.1 General objective of the

discipline

 General improvement of programming efficiency.

 Approach programming from a practical point of view.

7.2 Specific objective of the

discipline

 Improve programming efficiency by using a disciplined approach;

 Be aware of the time-consuming tasks while programming and the

tools and methods to avoid them.

principle, Coupling and cohesion. Refactoring. Conversation

Didactical

demonstration

4. Programming discipline: code documentation.

Pre/post conditions, border cases, well-chosen

identifiers, tools.

Interactive exposure

Explanation

Conversation

Didactical

demonstration

5. Programming discipline: Undefined behaviour,

implementation defined behaviour, premature

optimization, good optimization.

Interactive exposure

Explanation

Conversation

Didactical

demonstration

6. Programming discipline: defensive

programming. assert() on pre/post conditions

and invariants. Input data validation. Fail fast

principle.

Interactive exposure

Explanation

Conversation

Didactical

demonstration

7. Programming discipline: Input data validation,

efficient diagnosing of errors, secure code.

Interactive exposure

Explanation

Conversation

Didactical

demonstration

8. Testing and debugging techniques: IDE

debugger, assert(), core dumps, regression

tests, logging and log filtering.

Interactive exposure

Explanation

Conversation

Didactical

demonstration

9. Patterns and techniques: Classes: value

semantic vs. object semantic. Immutable

classes.

Interactive exposure

Explanation

Conversation

Didactical

demonstration

10. Patterns and techniques: Constructors,

destructors, resources and invariants. RAII.

Interactive exposure

Explanation

Conversation

Didactical

demonstration

11. Patterns and techniques: exceptions. Exception

safety levels.

Interactive exposure

Explanation

Conversation

Didactical

demonstration

12. Patterns and techniques: multi-threading

patterns.

Interactive exposure

Explanation

Conversation

Didactical

demonstration

13. Source control tools and best practices Interactive exposure

Explanation

Conversation

Didactical

demonstration

14. Continous integration tools and best practices Interactive exposure

Explanation

Conversation

Didactical

demonstration

Bibliography
1. Michael Howard and David LeBlanc: Writing Secure Code, MicrosoftPress, 2003.

2. Herb Sutter, Andrei Alexandrescu: C++ Coding Standards: 101 Rules, Guidelines, and Best Practices. Addison-

Wesley, 2010.

3. Martin Fowler and others: Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

4. Robert C. Martin: Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall.

5. Andrew Hunt , David Thomas: The Pragmatic Programmer: From Journeyman to Master. Addison-Wesley,

2000.

6. Marshall P. Cline, Greg Lomow, Mike Girou: C++ FAQs (2nd Edition). Addison-Wesley, 1999.

8.2 Seminar / laboratory Teaching methods Remarks

1. Introduction, administrative issues. Code

examples.

Dialogue, debate,

case study, guided

discovery

2. Programming discipline: One Responsibility

Rule principle, Don’t Repeat Yourself

principle, Coupling and cohesion. Refactoring.

Code documentation. Pre/post conditions,

border cases, well-chosen identifiers, tools.

Dialogue, debate,

case study, guided

discovery

3. Programming discipline: Undefined behaviour,

implementation defined behaviour, premature

optimization, good optimization. Defensive

programming. assert() on pre/post conditions

and invariants. Input data validation. Fail fast

principle.

Dialogue, debate,

case study, guided

discovery

4. Programming discipline: Input data validation,

efficient diagnosing of errors, secure code.

Testing and debugging techniques: IDE

debugger, assert(), core dumps, regression

tests, logging and log filtering.

Dialogue, debate,

case study, guided

discovery

5. Patterns and techniques: Classes: value

semantic vs. object semantic. Immutable

classes. Constructors, destructors, resources

and invariants. RAII.

Dialogue, debate,

case study, guided

discovery

6. Patterns and techniques: exceptions. Exception

safety levels. Multi-threading patterns.

Dialogue, debate,

case study, guided

discovery

7. Programming discipline: Tracking changes and

(automated) testing.

Dialogue, debate,

case study, guided

discovery

Bibliography
7. Michael Howard and David LeBlanc: Writing Secure Code, MicrosoftPress, 2003.

8. Herb Sutter, Andrei Alexandrescu: C++ Coding Standards: 101 Rules, Guidelines, and Best Practices. Addison-

Wesley, 2010.

9. Martin Fowler and others: Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

10. Robert C. Martin: Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall.

11. Andrew Hunt , David Thomas: The Pragmatic Programmer: From Journeyman to Master. Addison-Wesley,

2000.

12. Marshall P. Cline, Greg Lomow, Mike Girou: C++ FAQs (2nd Edition). Addison-Wesley, 1999.

9. Corroborating the content of the discipline with the expectations of the epistemic community,

professional associations and representative employers within the field of the program

 The content of the course comes from practical field experience.

10. Evaluation

Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)

10.4 Course

10.5 Seminar/lab activities - know the basic principles

discussed at the course and

know to apply them;

- recognize the weak spots

in a program;

- find good ways to avoid

the weak spots

Verifying the practical

works.

50%

- be able to show the

understanding of the

principles in a mini-project

Verifying the project

10.6 Minimum performance standards
 At least grade 5 (from a scale of 1 to 10) for the average.

Date Signature of course coordinator Signature of seminar coordinator

..........................

Date of approval Signature of the head of department

... …............................

