SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University, Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the	di	scipline	Databases				
2.2 Course coordinator			Lect. Dr. Sabina Surdu				
2.3 Seminar coordinator Lect. Dr. Sabina Surdu							
2.4. Year of	2	2.5	3	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	
2.8. Code of the MLE5027							
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	3
				seminar/laboratory	
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	42
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					21
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					25
Tutorship					11
Evaluations					8
Other activities:					
2.7 T-4-1 ' 1'' 11 -4 1 1		00			

3.7 Total individual study hours	80
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Data structures and algorithms
4.2. competencies	Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	Lecture room with a video projector
5.2. for the seminar /lab	Lab room with SQL Server, Visual Studio

activities	
------------	--

6. Specific competencies acquired

•	C 5.1 Identifying basic concepts for data organization in databases C 5.2 Identifying and explaining basic models for data organization and management in databases
Professional competencies	C 5.3 Using methodologies and database design environments for specific problems C 5.4 Evaluating the quality of various Database Management Systems in terms of their
Professi	structure, functionality and extensibility C 5.5 Developing projects involving databases
l es	CT1 - Applying organized and efficient work rules, responsible attitudes towards the didactic and scientific field, in order to creatively capitalize on one's own potential, while respecting the professional ethics principles and rules
Transversal competencies	CT3 - Use efficient methods and techniques for learning, knowledge gaining, researching and developing abilities for knowledge capitalization and accommodation to the requirements of a dynamic society

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To get acquainted with the fundamental concepts concerning databases To gain a thorough understanding of the relational data model
7.2 Specific objective of the discipline	 To manage (to create, to modify) relational databases in SQL Server To analyse data using complex SQL queries To optimise SQL queries

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Databases	Interactive	
	presentation	
	Conversation	
	Examples	
	Explanation	
2. The Relational Data Model	Interactive	
	presentation	
	Conversation	
	Examples	
	Explanation	
3. SQL Queries	Interactive	
	presentation	
	Conversation	
	Examples	
	Explanation	
4-5. Functional Dependencies, Normal Forms	Interactive	
	presentation	

	Conversation
	Examples
	Explanation
6. The Relational Algebra	Interactive
C	presentation
	Conversation
	Examples
	Explanation
7. The Physical Structure of Databases	Interactive
	presentation
	Conversation
	Examples
	Explanation
8-10. Indexes. Trees. Hash files	Interactive
	presentation
	Conversation
	Examples
	Explanation
11. Evaluating the Relational Algebra Operators	Interactive
	presentation
	Conversation
	Examples
	Explanation
12. Conceptual Modeling	Interactive
	presentation
	Conversation
	Examples
	Explanation
13. Object-Oriented Databases, Data Streams	Interactive
	presentation
	Conversation
	Examples
	Explanation
14. Problems	Interactive
	presentation
	Conversation
	Examples
	Explanation

Bibliography

ABADI, D.J., CARNEY, D., CETINTEMEL, U., CHERNIACK, M., CONVEY, C., LEE, S., STONEBRAKER, M., TATBUL, N., ZDONIK, S.B., Aurora: A New Model and Architecture for Data Stream Management, The VLDB Journal, 12(2):120–139, 2003

ARASU, A., BABCOCK, B., BABU, S., DATAR, M., ITO, K., MOTWANI, R., NISHIZAWA, I., SRIVASTAVA, U., THOMAS, D., VARMA, R., WIDOM, J., STREAM: The Stanford Stream Data Manager, IEEE Data Engineering Bulletin 26(1): 19-26, 2003

ARASU, A., CHERNIACK, M., GALVEZ, E., MAIER, D., MASKEY, A.S., RYVKINA, E., STONEBREAKER, M., TIBBETTS, R., Linear Road: A Stream Data Management Benchmark, Proceedings of The Thirtieth International Conference on Very Large Data Bases (VLDB 2004), 480-491, 2004

DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003

GARCIA-MOLINA, H., ULLMAN, J., WIDOM, J., Database Systems: The Complete Book, Prentice Hall Press, 2008

GRIPAY, Y., LAFOREST, F., LESUEUR, F., LUMINEAU, N., PETIT, J.-M., SCUTURICI, V.-M., SEBAHI, S., SURDU, S., ColisTrack: Testbed for a Pervasive Environment Management System, Proceedings of The 15th International Conference on Extending Database Technology (EDBT 2012), 574-

577, 2012

KAZEMITABAR, S.J., DEMIRYUREK, U., ALI, M., AKDOGAN, A., SHAHABI, C., Geospatial Stream Query Processing Using Microsoft SQL Server StreamInsight, Proceedings of the VLDB Endowment, 3(2): 1537-1540, 2010

KNUTH, D.E., Tratat de programare a calculatoarelor. Sortare și căutare, Editura Tehnică, București, 1976 LITCHFIELD, D., ANLEY, C., HEASMAN, J., GRINDLAY, B., The Database Hacker's Handbook: Defending Database Servers, John Wiley & Sons, 2005

LIU, L., OZSU, M.T., Encyclopedia of Database Systems, Springer, 2009

RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems, McGraw-Hill, 2007,

http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html

RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems (2nd Edition), McGraw-Hill, 2000 SILBERSCHATZ, A., KORTH, H., SUDARSHAN, S., Database System Concepts, McGraw-Hill, 2010 ŢÂMBULEA, L., Curs Baze de date, Facultatea de Matematică și Informatică, UBB, versiunea 2013-2014 ŢÂMBULEA, L., Baze de date, Litografiat, Cluj-Napoca, 2003

ULLMAN, J., WIDOM, J., A First Course in Database Systems,

http://infolab.stanford.edu/~ullman/fcdb.html

*** – StreamInsight documentație tehnică, https://technet.microsoft.com/en-

us/library/hh750618(v=sql.10).aspx

8.2 Seminar / laboratory	Teaching methods	Remarks
Seminar		
1. SQL - Data Definition Language	Conversation	
	Problems	
	Examples	
	Explanation	
2. SQL - Data Manipulation Language	Conversation	
	Problems	
	Examples	
	Explanation	
3. Stored Procedures, Dynamic SQL, Cursors	Conversation	
	Problems	
	Examples	
	Explanation	
4. Functions, Views, Triggers	Conversation	
	Problems	
	Examples	
	Explanation	
5. Indexes (I)	Conversation	
	Problems	
	Examples	
	Explanation	
6. Indexes (II)	Conversation	
	Problems	
	Examples	
	Explanation	
7. Problems	Conversation	
	Problems	
	Examples	
	Explanation	
Laboratory		
1. Database Design	Conversation	
	Problems	
	Examples	
	Explanation	
2. SQL Queries	Conversation	
	Problems	

	Examples
	Explanation
3. Alter the Database	Conversation
	Problems
	Examples
	Explanation
4. Database Testing	Conversation
	Problems
	Examples
	Explanation
5. Indexes	Conversation
	Problems
	Examples
	Explanation
Bibliography	
Course bibliography	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course is oriented towards the problems a graduate student should solve at his / her future workplace. The acquired knowledge is considered as mandatory by software companies.
- The course is part of the academic curriculum of all major universities in Romania and abroad.
- The course structure follows the IEEE and ACM Recommendations concerning the Computer Science curriculum.

10. Evaluation

10. Evaluation			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	• to know and apply the	written exam	50%
	concepts described at		
	the course		
	• to solve problems		
10.5 Seminar/lab activities	• to be able to apply the	• lab evaluation	50%
	concepts from the	• practical exam	
	course and seminar to	-	
	design / alter a database,		
	to analyse data with		
	SQL queries, to optimise		
	queries		
10 - 3 - 5 - 5 - 6			

10.6 Minimum performance standards

- > To pass, a student must get a grade of at least 5 (on a scale of 1 to 10) on the written exam, practical exam and lab evaluation.
- To attend the exam, a student must have at least 12 laboratory attendances and at least 5 seminar attendances, according to the Computer Science Department's decision: http://www.cs.ubbcluj.ro/wp-content/uploads/Hotarare-CDI-15.03.2017.pdf.

Date

Signature of course coordinator

Signature of seminar coordinator

22.04.2018

Lect. Dr. Sabina Surdu

Lect. Dr. Sabina Surdu

Date of approval

Signature of the head of department

Prof. Dr. Anca Andreica