SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the	scipline	Pr	obability Theory an	d Sta	atistics		
2.2 Course coordinatorAssoc. Prof. PhD. Sanda Micula							
2.3 Seminar coordinator				Assoc. Prof. PhD. Sanda Micula			
2.4. Year of	2	2.5	3	2.6. Type of	Ε	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 sem +
				seminar/laboratory	1 lab
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					25
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					25
Tutorship					9
Evaluations					20
Other activities:					-
3.7 Total individual study hours		94			

3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis		
	• Algebra		
4.2. competencies	Logical thinking		
	Average logical programming skills		

5. Conditions (if necessary)

5.2. for the seminar /lab	•	For seminar: room with large blackboard
activities	•	For lab: Laboratory with computers having Matlab installed

6. Specific competencies acquired

	C4.1 Defining basic concepts, theory and mathematical models					
nal cie	C4.2 Interpretation of mathematical models					
ene	C4.3 Identifying the appropriate models and methods for solving real-life problems					
ess	CA 5 Embedding formal models in applications from various areas					
Prof comj	C 1.5 Embedding formar models in appreadons from various areas					
•						
	CTI Ability to conform to the requirements of organized and efficient work, to develop a					
	responsible approach towards the academic and scientific fields, in order to make the most of					
	one's own creative potential, while obeying the rules and principles of professional ethic					
es						
csa	CT3 Using efficient methods and techniques for learning, information, research and developing					
vei etei	capabilities for using knowledge, for adapting to a dynamic society and for communicating in					
ədu	Romanian and in a worldwide spoken language					
lra on						
L C						

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Acquire basic knowledge of Probability Theory and Mathematical Statistics, with main focus on applications
7.2 Specific objective of the discipline	 Become familiar and be able to work with various probabilistic and statistical models Ability to perform statistical analysis of data Ability to use statistical features of various mathematical software

8. Content

8.1 Course	Teaching methods	Remarks
 Experiments, events, field of events, operations with events. Axiomatic definition of probability. Poincaré's formula. Classical definition of probability. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Conditional probability. Independent events. Total probability formula. Classical probabilistic models (Binomial, Hypergeometric, Poisson, Pascal, Geometric). 	 Interactive exposure Explanation Conversation Didactical demonstration 	
3. Random variables and random vectors. Discrete random variables. Probability distribution function. Cumulative distribution function. Properties, examples.	 Interactive exposure Explanation Conversation Didactical demonstration 	
 4. Discrete probability laws (Bernoulli, Binomial, Hypergeometric, Poisson, Negative Binomial, Geometric). Discrete random vectors. Operations with discrete random variables. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
5. Continuous random variables. Probability density function. Continuous probability	Interactive exposure	

 laws (Uniform, Normal, Gamma, Exponential, Chi-square, Student, Fisher). Independent random variables. Functions of continuous random variables. 6. Numerical characteristics of random variables. Expectation. Variance. Moments (initial, central, absolute). Covariance and correlation coefficient. Quantile, median, quartiles. Inequalities (Markov, Chebyshev). 	 Explanation Conversation Didactical demonstration Interactive exposure Explanation Conversation Didactical demonstration 	
 Stochastic processes. Markov chains. Transition probability matrix. Steady-state distribution. Regular Markov chains. Periodic Markov chains. Examples 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Descriptive statistics. Data collection. Graphical display of data. Frequency distribution and histograms. Parameters of a statistical distribution. Measures of central tendency. Measures of variation. Correlation and regression. Linear regression. 	 Interactive exposure Explanation Conversation Didactical demonstration 	Video projector presentation
 Sample theory. Samples. Sample functions (sample mean, sample variance, sample moments). Confidence intervals for estimating the population mean and the population variance. Confidence intervals for comparing two population means and two population variances. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Estimation theory. Properties of point estimators. Unbiased and minimum variance estimators. Standard error. Likelihood function. Fisher's information. Examples. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 11. Absolutely correct estimators. The Rao- Cramer inequality. Efficient estimators. Methods of estimation. The method of moments estimator, the method of maximum likelihood estimator. Examples. 	 Interactive exposure Explanation Conversation Didactical demosntration 	
 Hypothesis testing. Rejection region. Type I errors. Significance testing and P-values. The Z-test for the mean. Examples. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
13. The T (Student)-test for the mean. The Chi- square-test for the variance. The F-test for the ratio of variances. Tests for the difference of means. Examples. Robust tests.	 Interactive exposure Explanation Conversation Didactical demonstration 	
14. Type II errors and the power of a test. Most powerful tests and the Neyman-Pearson lemma. Uniformly most powerful tests. Examples.	 Interactive exposure Explanation Conversation Didactical demonstration 	

Bibliography

1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.

2. Baron, M., Probability and Statistics for Computer Scientists, CRC Press, Taylor and Francis, Boca Raton, FL, 2014.

3. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

4.	Blaga, P., Calculul probabilitatilor si statistica	matem	atica. Vol. II. Curs si culege	re de probleme,
5	Feller W. An introduction to probability th	ieorv a	nd its applications. Vol. 1.	3 rd edition. WSE
5.	Wiley, New York, 2008.	icory a		
6.	DeGroot, M. H., Schervish, M. J., Probability	and Sta	atistics, Addison-Wesley, Bo	oston, 2012.
8.2 Se	minar	Teach	ing methods	Remarks
1.	Euler's Functions; Properties. Counting,	•	Interactive exposure	The seminar is
	Outcomes, Events.	•	Explanation	structured as 2
		•	Conversation	hours per
				week, every
	Classical Dashahilitan Dalas of Dashahilitan		T	other week
۷.	Conditional Probability; Rules of Probability;	•	Interactive exposure	
	Events	•	Explanation	
	Events.	•	Conversation	
		•	Individual and group	
2	Drobabilistia modela		WOFK	
5.	Probabilistic models.	•	Conversation	
		•	Conversation	
		•	Synthesis	
		•	work	
4	Discrete random variables and discrete	•	Interactive exposure	
	random vectors		Explanation	
			Conversation	
			Individual and group	
			work	
5.	Continuous random variables and	•	Interactive exposure	
01	continuous random vectors.		Explanation	
			Conversation	
		•	Didactical demonstration	
		•	Individual and group	
			work	
6.	Numerical characteristics of random	•	Interactive exposure	
	variables.	•	Explanation	
		•	Conversation	
		•	Didactical demonstration	
		•	Individual and group	
			work	
7.	Inequalities; Central Limit Theorem;	•	Interactive exposure	
	Markov Chains; Point Estimators.	•	Explanation	
		•	Conversation	
		•	Didactical demonstration	
		•	Individual and group	
			work	
8.3 La	boratory	Teach	ing methods	Remarks
1.	Introduction to Matlab.	•	Interactive exposure	The lab is
		•	Explanation	structured as 2
		•	Conversation	nours per
		•	Individual and group	other week
2			work	
2.	Discrete random variables; Probability	•	Interactive exposure	
	Matlab	•	Explanation	
	Manau.	•	Conversation	1

	Individual and group work	
 Continuous random variables; Probability density function; CDF and Inverse CDF. 	 Interactive exposure Explanation Conversation Individual and group work 	
 Numerical characteristics of random variables; Random number generators (command RND in Matlab); Computer simulations of discrete random variables. 	 Interactive exposure Synthesis Conversation Individual and group work 	
 Descriptive Statistics; Statistical measures; Correlation and regression; Confidence intervals for means and variances. 	 Interactive exposure Explanation Conversation Individual and group work 	
 Hypothesis and significance testing for means and variances. 	 Interactive exposure Explanation Conversation Individual and group work 	
7. Overview of statistical methods.	 Interactive exposure Explanation Conversation Individual work 	

Bibliography

- 1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.
- 2. Baron, M., Probability and Statistics for Computer Scientists, CRC Press, Taylor and Francis, Boca Raton, FL, 2014.
- 3. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002.
- 4. Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, 2006.
- 5. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the ACM and IEEE Curriculum Recommendations for Computer Science majors;
- The course exists in the studying program of all major universities in Romania and abroad;
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research;
- The statistical analysis abilities acquired in this course are useful in any career path students may choose;

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	- acquire the basic	Written exam on problems	50%	
	principles in Probability	only (a sheet with the main		

	Theory and Mathematical	probabilistic and statistical		
	Statistics;	formulas is available)		
	- be able to apply			
	correctly the course			
	concepts on various			
	applications			
	- problem solving			
10.5 Seminar activities	- be able to apply course	- participation in discussing	25%	
	concepts and techniques	and solving problems		
	on practical problems	throughout the semester		
	- be able to choose and	- additional documentation		
	apply the right	- individual presentation of		
	probabilistic or statistical	solutions		
	model to various practical	- solving bonus problems		
	problems			
	- problem solving			
10.6 Lab activities	- be able to implement	- participation in discussing	25%	
	course concepts and	and solving problems		
	algorithms in Matlab	throughout the semester		
	- be able to solve	- lab exam (numerical		
	numerical statistical	statistical applications)		
	problems in Matlab			
10.7 Minimum performance standards				
A grade of 5 or above (on a scale from 1 to 10) on <u>each</u> of the three activities mentioned above				
(written test, seminar evaluation, lab evaluation)				

Date	Signature of course coordinator	Signature of seminar coordinator
16.04.2018	Assoc. Prof. PhD. Sanda Micula	Assoc. Prof. PhD. Sanda Micula

Date of approval

Signature of the head of department

.....

.....