SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Computer Science

2. Information regarding the discipline

2.1 Name of the discipline	Graph algorithms
2.2 Course coordinator	Lect. PhD. Radu Lupsa
2.3 Seminar coordinator	Lect. PhD. Radu Lupsa
2.4. Year of study1 2.5 Semeste	r 2 2.6. Type of evaluation C 2.7 Type of Compulsory discipline

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per we	eek	4	Of which: 3.2 course	2	3.3	1 sem + 1
					seminar/laboratory	lab
3.4 Total hours in	n the curriculum	56	Of which: 3.5 course	28	3.6	28
					seminar/laboratory	
Time allotment:				hours		
Learning using manual, course support, bibliography, course notes				20		
Additional documentation (in libraries, on electronic platforms, field documentation)				10		
Preparation for seminars/labs, homework, papers, portfolios and essays				30		
Tutorship				4		
Evaluations				5		
Other activities:				-		
3.7 Total	69					
individual study						
hours						
3.8 Total hours	125					
per semester						
3.9 Number of	5					

······································	
4.1. curriculum	Data Structures and Algorithms
4.2. competencies	Average skils in analysis and design of algorithms and data structures, including implementing them in a programming language.
5.1. for the course	•
5.2. for the seminar /lab activities	Laboratory with computers; high level programming language environment (C++, Java, .NET, python)

4. Prerequisites (if necessary)

5. Conditions (if necessary)

6. Specific competencies acquired

Profess ional compet encies Transv ersal compet encies	 C3.2 Identif aplicare C3.3 Utiliza problemelor C 4.2 Interprint C 4.3 Identif CT1 Aplicare de domeniul or respectarea print CT3 Utilizare dezvoltare a or societati dina 	ficarea si explicarea modelelor informatice de baza adecvate domeniului de area modelelor si instrumentelor informatice si matematice pentru rezolvarea specifice domeniului de aplicare retarea de modele matematice si informatice (formale) ficarea modelelor si metodelor adecvate pentru rezolvarea unor probleme reale ea regulilor de munca organizata si eficienta, a unor atitudini responsabile fata didactic-stiintific, pentru valorificarea creativa a propriului potential, cu orincipiilor si a normelor de etica profesionala ea unor metode si tehnici eficiente de învatare, informare, cercetare si capacitatilor de valorificare a cunostintelor, de adaptare la cerintele unei				
7.1 General objective of the discipline		 Knowing the graph theoretical concepts and using these concepts in the problem modeling. Knowing how to implement the graph algorithms in a 				
7.2 Specific objective		 programming language. Analyzing the issues around the main topics of graph: connectivity, shortest paths, modeling prerequisites and activity planning, flows, traveling salesman problem, planar graphs. 				

7. Objectives of the discipline (outcome of the acquired competencies)

To be able to use graphs as a modeling tool for programming problems. To know the elementary graph problems and their solutions. To develop the general algorithmic skills.

8. Content

8.1 Course	Teaching methods	Remarks
 Basic graph theory definitions (graph, multigraph, directed graph/multigraph, walk, trail, path), basics on graph representations 	Exposure: description, explanation, examples, debate	
2. In-deep study of possible graph representations	Exposure: description, explanation, examples, debate	
3. Connectivity and shortest path problems. Depth-first and breadth-first traversal of a graph.Connected and strongly-connected components.	Exposure: description, explanation, examples, debate	
4. Minimum-cost path in a graph. Dynamic programming approach. Bellman-Ford algorithm.	Exposure: description, explanation, examples, debate	
5. Dijkstra algorithm . A-star algorithm. Floyd-Warshal algorithm.	Exposure: description, explanation, examples, debate	
6. Dependency graphs, partial order and topological sorting. Topological sorting algorithms and strongly connected components algorithms.	Exposure: description, explanation, examples, debate	
7. Activity planning problem and algorithms.	Exposure: description, explanation, examples, debate	
8. Trees and forests. Minimum spanning trees. Kruskal and Prim algorithms.	Exposure: description, explanation, examples, debate	
9. NP-complete problems. Hamiltonian cycle, Traveling Salesman Problem.	Exposure: description, explanation, examples, debate	
10 . Other hard problems: clique, vertex cover, coloring.	Exposure: description, explanation, examples, debate	
11 . Eulerian cycle. Planar graphs: Euler's relation, K5 and K3,3 graphs, relations between number of edges and vertices.	Exposure: description, explanation, examples, debate	
12. Transport networks. Maximum flow. Ford-Fulkerson algorithm.	Exposure: description, explanation, examples, debate	
13. Maximum flow of minimim cost.	Exposure: description, explanation, examples, debate	
14. Matching problem	Exposure: description, explanation, examples, debate	
Bibliography	1	1

1. CORMEN, LEISERSON, RIVEST: Introducere in algoritmi, Editura Computer Libris Agora, 2000.

2. T. TOADERE: Grafe. Teorie, algoritmi si aplicatii , Ed. Albastra, Cluj-N., 2002

- 3. KÁSA ZOLTÁN: Combinatiroca cu aplicatii, Presa Universitara Clujeana, 2003.
- 4. BERGE C., Graphes et hypergraphes, Dunod, Paris 1970.
- 5. BERGE C., Teoria grafurilor si aplicatiile ei, Ed. Tehnica, 1972
- 6. http://www.cs.ubbcluj.ro/~rlupsa/edu/grafe/

8.2 Seminar	Teaching methods	Remarks
1. Basic definitions. Graph representations.	Dialogue, debate, examples, guided discovery	
2. More on graph representations. Graph traversals. Connected components.	Dialogue, debate, examples, guided discovery	
3. Finding shortest path. Bellman-Ford algorithm.	Dialogue, debate, examples, guided discovery	
4. Shortest path: Dijkstra and Floyd- Warshall.	Dialogue, debate, examples, guided discovery	
5. Tree traversal. Minimum spanning tree: Kruskal and Prim algorithms.	Dialogue, debate, examples, guided discovery	
6. Planar graphs. Hard problems in graph theory.	Dialogue, debate, examples, guided discovery	
7. Maximim flow and matching problems.	Dialogue, debate, examples, guided discovery	
8.3 Laboratory	Teaching methods	Remarks
8. Graph representations	Dialogue, debate, case study, guided discovery	
9. More on graph representations	Dialogue, debate, case study, guided discovery	
10 . Connectivity and lowest length paths	Dialogue, debate, case study, guided discovery	
11. Lowest cost paths	Dialogue, debate, case study, guided discovery	
12 . Dependency graphs. Minimum spanning trees.	Dialogue, debate, case study, guided discovery	
13. NP-complete problems	Dialogue, debate, case study, guided discovery	
14. Finishing the lab activity.	Dialogue, debate, case study, guided discovery	

Bibliography

1. KÁSA Z., TARTIA C., TAMBULEA L.: Culegere de probleme de teoria grafelor, Lito. Univ. Cluj-Napoca 1979.

2. CATARANCIUC S., IACOB M.E., TOADERE T., Probleme de teoria grafelor, Lito. Univ. Cluj-Napoca, 1994.

3. TOMESCU I., Probleme de combinatorica si teoria grafurilor. Ed. Did. si Pedag. Bucuresti 1981.

4. KÁSA Z., TARTIA C., TAMBULEA L.: Culegere de probleme de teoria grafelor, Lito. Univ. Cluj-Napoca 1979.

5. CATARANCIUC S., IACOB M.E., TOADERE T., Probleme de teoria grafelor, Lito. Univ. Cluj-Napoca, 1994.

6. TOMESCU I., Probleme de combinatorica si teoria grafurilor. Ed. Did. si Pedag. Bucuresti 1981.

7. http://www.cs.ubbcluj.ro/~rlupsa/edu/grafe/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	 know the basic principle of the domain; apply the course concepts problem solving 	Written exam	66.67%	
10.5 Seminar/lab activities	- be able to implement course concepts and algorithms	Verifying the practical works.	33.33%	
10.6 Minimum performance standards				
• At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.				

Date

Signature of course coordinator

Signature of seminar coordinator

••••••

Lect. PhD. Radu Lupsa.....

..Lect. PhD. Radu Lupsa

Date of approval

.....

Signature of the head of department

.....