SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Computer Science

2. Information regarding the discipline

2.1 Name of the	Geometry
discipline	
2.2 Course coordinator	Assoc.Prof.PhD. Cornel Pintea
2.3 Seminar	Assoc.Prof.PhD. Cornel Pintea
coordinator	
2.4. Year of study	1 2.5 Semester 2 2.6. Type of evaluation VP 2.7 Type of discipline Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar	2 sem
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar	28
Time allotment:	hou	rs	'		
Learning using manual, course support, bibliography, course notes	20				
Additional documentation (in libraries, on electronic platforms, field documentation)	10				
Preparation for seminars/labs, homework, papers, portfolios and essays	15				
Tutorship	12				
Evaluations	12				
Other activities:	-				
3.7 Total individual study hours	69				

3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	•	Elementary abstract algebra
4.2. competencies	•	Competencies of logic reasonings and in using the knowledges
		of the above mentioned curricula.

5. Conditions (if necessary)

5.1. for the course	
	The classroom should be gifted with a board and video
	projector. The attendance is strongly recommended within
	the set timetable.
	The classroom should be gifted with a board and video
/lab activities	projector. The attendance is recommended within the set
	timetable. The study of the courses and the seminars prior
	to the seminar is also recommended.

6. Specific competencies acquired

Professional	C4.3 Identifying the appropriate models and methods for solving real problems
competencies	C4.5 Incorporating formal models into specific applications in various fields

Transversal competencies

CT1 Applying organized and efficient work rules, responsible attitudes towards the didactic-scientific field, for the creative valorisation of their own potential, observing the principles and norms of professional ethics

CT3 The use of effective methods and techniques of learning, information, research and development of knowledge valorization capacities, adjustment to the requirements of a dynamic and communication society in Romanian and in an international language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Ability to distinguish the objects of analytic geometry in different contexts. To get hold of the fundamental theoretical results of analytic geometry. Knowledge, understanding and use of basic objects and concepts of analytic geometry.
7.2 Specific objective of the discipline	 The students are expected to acquire the ability to recognize the objects of analytic geometry in different contexts such as other courses studied by themselves which require such knowledge. The students are expected to cultivate their abilities acquired within the course of analytic geometry in order to connect and apply them within some other courses studied by themselves which require such knowledge. To use the knowledge acquired within the couse of analytic geometry in order to apply them in real life problems which lend oneself to analytic approaches.

8. Content

8.1 Course	Teaching methods	Remarks
1. Vector algebra	Exposure: description,	
1.1 Free vectors	explanation, examples	
1.1.1 Operations with vectors		
• The addition of vectors		
• The multiplication of vectors with scalars		

2. Straight lines and planes	Exposure: description,
2.1 Linear dependence and linear independence of vectors	explanation, examples
2.1.1 The vector ecuation of the straight lines and planes	
3. Cartezian equations of lines and planes	Exposure: description,
3.1 Cartesian reference systems	explanation, examples
3.2 The cartesian equations of the straight lines	
3.3 Te cartesian equations of the planes. Pencils of planes	
3.4 Analytic conditions of parallelism	
3.5 Appendix: The Cartesian equations of lines in the two dimensional setting	
4. Projections and symmetries	Exposure: description,
4.1 Projections and symmetries	explanation, examples
4.1.1 The intersection point of a straight line and a plane	
4.1.2 The projection on a plane parallel to a given line .	
4.1.3 The symmetry with respect to a plane parallel to a line	
4.1.4 The projection on a straight line parallel to a given plane	
4.2 Appendix: Projections and symmetries in the two dimensional setting	
5. Products of vectors	Exposure: description,
5.1 The dot product	explanation, examples, proofs, debate, dialogue
5.1.1 Applications of the dot product	
♦ The two dimensional setting	
♦ The three dimensional setting	
5.2 Appendix: Orthogonal projections and reflections	
5.2.1 The two dimensional setting	
5.2.2 The three dimensional setting	
6.1 The vector product	Exposure: description,
6.2 Applications of the vector product	explanation, examples, proofs, debate, dialogue
7. 1 The double vector (cross) product	Exposure: description, explanation, examples.

7.2 The triple scalar product	
8. Applications of the triple scalar product	Exposure: description,
8.1 The distance between two straight lines	explanation, examples, proofs
8.2 The coplanarity condition of two straight lines	
9. Conics	Exposure: description,
9.1 The Ellipse	explanation, examples, proofs
9.2 The Hyperbola.	
9.3 The Parabola	
10. Quadrics	Exposure: description,
10.1 The ellipsoid	explanation, examples, proofs
10.2 The hyperboloid of one sheet	
10.3 The hyperboloid of two sheets	
10.4 Hyperbolic Paraboloids	
10.5 Elliptic Cones	
10.6 Elliptic Paraboloids	
10.7 Singular Quadrics	
11. Generated Surfaces	Exposure: description,
11.1 Cylindrical Surfaces	explanation, examples, proofs
11.2 Conical Surfaces	
11.3 Conoidal Surfaces	
11.4 Revolution Surfaces	
12. Transformations of the plane	Exposure: description,
12.1 Translations	explanation, examples, proofs
12.2 Scaling about the origin	
12.3 Reflections	
12.4 Rotations	
12.5 Shears	
13. Homogeneous coordinates	Exposure: description,
13.1 Transformations of the plane in homogeneous coordinates	explanation, examples, proofs

13.2 Translations and scalings		
13.3 Reflections		
13.4 Rotations		
13.5 Shears		
14. Transformations of the space	Exposure: description,	
1/1 Translations	explanation, examples, proofs	
14.2 Scaling about the origin		
14.3 Reflections about planes		
14.4 Rotations		
14.5 Homogeneous coordinates		

Bibliography

- 1. Andrica, D., Ţopan, L., Analytic Geometry, Cluj University Press, 2004.
- 2. Blundell, B.G., An Introduction to Computer Graphics and Creative 3-D Environments, Springer, 2008.
- 3. Pintea, C., Geometrie. Elemente de geometrie analitică. Elemente de geometrie diferențială a curbelor și suprafețelor, Presa universitară clujeană, 2001.
- 4. Smaranda, D., Soare, N., Transformări geometrice, Editura Academiei RSR, BucureȘti, 1988.

8.2 Seminar	Teaching methods	Remarks
Problems on vector algebra with applications in classical geometry.	Explation, dialogue, solving problems	One tutorial
•	Dialogue, debate, examples, solving problems	Two tutorials
· · · · · · · · · · · · · · · · · · ·	Dialogue, debate, case studies, examples, solving problems	Two tutorials
	Dialogue, debate, case studies, examples, solving problems	Two tutorials
	Dialogue, debate, examples, solving problems	Two tutorials
	Dialogue, debate, examples, solving	Two tutorials

5) Problems on associated geometric objects to quadrics, such as tangent plane, normal line and rectilinear generatrices.	problems	
	Dialogue, debate, examples, solving problems	One tutorial
8) Problems on reflexions, translations, scalling and projections.	Dialogue, debate, examples, solving problems	Two tutorials

Bibliography

- 1. Andrica, D., Ţopan, L., Analytic Geometry, Cluj University Press, 2004.
- 2. Blundell, B.G., An Introduction to Computer Graphics and Creative 3-D Environments, Springer, 2008.
- 3. Nicolescu, L., Boskoff, V., Probleme practice de geometrie, Ed. Tehnica, Bucureşti, 1990.
- 4. Pintea, C., Geometrie. Elemente de geometrie analitică. Elemente de geometrie diferențială a curbelor și suprafețelor, Presa universitară clujeană, 2001.
- 5. Smaranda, D., Soare, N., Transformări geometrice, Editura Academiei RSR, București, 1988.
- 6. Bercovici, M., Rimer, S., Triandaf, A., Culegere de probleme de geometrie analitică și diferențială, Editura didactică și pedagogică, București, 1973.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Generally speaking, Geometry, and Analytic Geometry in particular, may help individuals to build a logical thinking based on intuition. This may help to understand other mathematical fields or even other sciences. Also, geometry cultivate the practical abilities, from a theoretical point of view, extremely necessary in real life problems.
- •The course exists in the studying program of all major universities in Romania and abroad. The content of the course is suitable to build a strong mathematical background.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	The students are expected to know the basic concepts and results of analytic geometry; The students are expected to apply the course concepts in real life situations	consisting in theoretical	60%
10.5 Seminar	problems which are close to those solved during the tutorials. Good students are expected to solve problems	A grade for the student's activity within the tutorial during the whole semester. This might include a grade for the homeworks and/or a grade for a midterm quiz.	40%
10.6 Minimum perfo	rmance standards		1

At least grade 5 (from a scale of 1 to 10) at the final exam and the grade for tutorial component.

•••••		PROF. OCTAVIAN AGRATINI
Date of approval		Signature of the head of department
20.04.2018	Assoc.Prof.PhD. Cornel PINTEA	Assoc.Prof.PhD. Cornel PINTEA
Date	Signature of course coordinator	Signature of seminar coordinator