syllabus

1.1 Higher education institution	"Babes_Bolyai" University
1.2 Faculty	Faculty of Mathematics and Computer science
1.3 Department	Department of Computer Science
1.4 Field of study	Informatics(Computer Science)
1.5 Study cycle	Master
1.6 Study programme /	Component based programming
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Models in Parallel Programming							
2.2 Course coordinator Assoc.Prof.PhD. Niculescu Virginia							
2.3 Seminar coordinator As				Assoc.Prof.PhD. Nic	ulescu	Virginia	
2.4. Year of	1	2.5	1	2.6. Type of	Е.	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar/ laboratory	1 sem.
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6 seminar/ laboratory	14
Time allotment:					hours
Learning using manual, course supp	ort, bib	liography, course n	otes		46
Additional documentation (in libraries, on electronic platforms, field documentation)					40
Preparation for seminars/labs, homework, papers, portfolios and essays					46
Tutorship					14
Evaluations					12
Other activities:					-
3.7 Total individual study hours 158					
3.8 Total hours per semester 200					
3.9 Number of ECTS credits		8			

4. Prerequisites (if necessary)

4.1. curriculum	• Algorithms construction and evaluation, Data Structures, Object- oriented and functional programming
4.2. competencies	Programming skills and basic abilities for dealing with abstractions

5. Conditions (if necessary)

5.1. for the course	•	Projector, blackboard
5.2. for the seminar	•	Projector, blackboard, computers(laptops)

6. Specific competencies acquired

Profess ional compet encies	 Knowledge, understanding of the basic concepts of parallel programming. Ability to work independently and/or in a team in order to solve problems in defined professional contexts (models). Knowledge, understanding of the theoretical foundations of parallel algorithms construction.
Transv ersal compet encies	 Ability to solve problems using parallel programming. Ability to do research work in the domain of the parallel programming by studing a particular model of parallel computation.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the subject, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has correct habits of analysis, design, and implementation using different models of parallel computation.
7.2 Specific objective of the discipline	 To present the basic paradigms of parallel programming . To offer different models of parallel programs development and understanding their necessity and their advantages. To create the ability to correctly develop parallel algorithms using different models of parallel computation (algorithms from linear algebra, numerical analysis, graph, searching and sorting algorithms)

8. Content

8.1 Course	Teaching methods	Remarks
 General Introduction to parallel programming: reasons for using parallel programming; problems and difficulties in parallel programming; the necessity of using models Parallel Computer Architectures - <i>Taxonomies</i> 	Exposure: description, explanation, examples, discussion of case studies	
 2. Types of parallelism ¥ Implicit parallelism ¥ Explicit Parallelism Data-parallel model Message-passing model Shared-variable model Task Dependency Graph, Task Interaction Graph, Degree of Concurrency, Granularity, Mapping 	Exposure: description, explanation, examples, discussion of case studies	

3. Phases in parallel programs development (PCAM)	Exposure: description, explanation, examples,
	discussion of case studies
- Partitioning, Communication, Agglomeration, Mapping	
Decomposition	
- functional (task decomposition)	
 of the domain(geometrical) data-distributions 	
4.	Exposure: description,
Interconnection networks	explanation, examples,
	discussion of case studies
5.	Exposure: description,
Shared Memory Parallel Programming	explanation, examples,
Synchronization problems	discussion of case studies
OpenMP	
6. Distributed Memory Parallel Programming	Exposure: description,
- MPI	explanation, examples,
1911 1	discussion of case studies
7. PRAM models	Exposure: description,
Computational networks	explanation, examples,
Brent Theorem	discussion of case studies
0	
8. Analytical Modeling of Parallel Systems	Exposure: description, explanation, examples,
Scalability	discussion of case studies
9. Parallel programming paradigms	Exposure: description,
- Master-slaves	explanation, examples,
- Task-Farm	discussion of case studies
- Work-Pool	
- Divide &Conquer - Pipeline	
Bulk Synchronous Parallel programming	Exposure: description,
- BSP	explanation, examples,
- LogP	discussion of case studies
10. Functional parallel programming	Exposure: description,
Bird-Meertens Formalism (BMF).	explanation, examples, discussion of case studies
- List Homomorphisms	
- Categorical Data Types	
Map-Reduce Model	
11.	Exposure: description, explanation, examples,
	discussion of case studies
Pares – A Model for Parallel Recursive Programs.	
- Special data structures of parallel recursion:	
PowerLists, ParLists, PLists	

 12. Interleaving/ Nondeterminancy/ Formal Methods UNITY "Unbounded Nondeterministic Iterative Transformations" model CSP(Communicating Sequential Processes) model 	Exposure: description, explanation, examples, discussion of case studies
 13. General presentation of the parallel computation models (PCM). Requierements for PCM Classification: implicit parallelism implicit decomposition explicit decomposition explicit mapping explicit communication everything explicit Main Categories of Models Classification/Comparison of the models for parallel computation. 	Exposure: description, explanation, examples, discussion of case studies

http://www.cs.ubbcluj.ro/~vniculescu/didactic/

Bibliography

- 1. Michael McCool, Arch Robinson, James Reinders, Structured Parallel Programming: Patterns for Efficient Computation," Morgan Kaufmann, 2012 .
- 2. A Pattern Language for Parallel Programming. Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders, Addison Wesley Software Patterns Series, 2004.
- 3. Grama, A. Gupta, G. Karypis, V. Kumar. Introduction to Parallel Computing, Addison Wesley, 2003.
- 4. Ian Foster. Designing and Building Parallel Programs, Addison-Wesley 1995.
- 5. K.M. Chandy, J. Misra, Parallel Program Design: A Foundation, Addison-Wesley, 1988.
- 6. M J QUINN. Parallel Programming in C with MPI and OpenMP, McGraw Hill, 2004.
- 7. J. Misra. PowerList: A structure for parallel recursion.ACM Transactions on Programming Languages and Systems, 16(6):1737-1767, November 1994.
- 8. Selim Akl, Parallel Computation: Models and Methods, Prentice Hall, 1997
- 9. B. WILKINSON, C.M. ALLEN. Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers, Prentice Hall, 1999.
- 10. C. A. R. Hoare, Communicating Sequential Processes. June 21, Prentice Hall International, 2004.
- 11. V. Niculescu. Calcul Paralel. Proiectare si dezvoltare formala a programelor paralele. Presa Univ. Clujana, 2006.
- V. Niculescu. *PARES A Model for Parallel Recursive Programs*, Romanian Journal of Information Science and Technology (ROMJIST), Ed. Academiei Romane, Volume 14(2011), No. 2, pp. 159–182, 2011
- 13. A.W. Roscoe, The Theory and Practice of Concurrency. Prentice-Hall 1998.
- 14. D. Skillicorn. Foundations of Parallel Programming, Cambridge International Series on Parallel Computations, 1994
- 15. D.B. Skillicorn, D. Talia. Models and Languages for Parallel Computation. ACM Computer Surveys, 30(2) pg.123-136, June 1998.

	T 1: 1 1	D 1
8.2 Seminar	Teaching methods	Remarks
1. Simple examples of parallel programs.	Explanation, dialogue, case studies	The seminar is structured as 2 hours classes every second week
2. Tehniques used in parallel programs construction.	Dialogue, debate, case studies, examples, proofs	
3. PRAM - examples	Dialogue, debate, case studies, examples, proofs	
4. MPI and OpenMP examples	Dialogue, debate, explanation, examples	
5. Student presentations	Dialogue, debate, explanation, examples	
6. Student presentations	Dialogue, debate, explanation, examples	
7. Student presentations	Dialogue, debate, explanation, examples	

Bibliography

- 1. C. A. R. Hoare. Communicating Sequential Processes was first published in by Prentice Hall International, 2004(revised). [http://www.usingcsp.com/cspbook.pdf]
- 2. D. Grigoras. Calculul Paralel. De la sisteme la programarea aplicatiilor. Computer Libris Agora, 2000.
- 3. Rob H. Bisseling. Parallel Scientific Computation: A Structured Approach using BSP and MPI, Oxford University Press, March 2004. 324 pages.
- 4. Roscoe, A. W. (Revised 2005), The Theory and Practice of Concurrency, Prentice Hall, ISBN 0-13-674409-5
- 5. Parallel Programming Model Watch [http://view.eecs.berkeley.edu/wiki/ Parallel_Programming_Model_Watch]

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course	- know the basic principles and paradigms of the domain;	Written exam	50%		
10.5 Seminar	- a research paper (<i>referat</i>) that presents a model of parallel computation	-presentation -discussion	50%		
10.6 Minimum performance standards					
★ At least grade 5 (from a scale of 1 to 10) at both written exam and research paper.					

Date	Signature of course coordinator	Signature of seminar coordinator
	Niculescu Virginia	Niculescu Virginia

Date of approval

Signature of the head of department

.....

.....