syllabus

8 8 1	8
1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science - English
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the di	scip	line (en)	(Operating Systems		
(ro)			\$	Sisteme de Operare		
2.2 Course coordin	nator	r	(Conf. Dr. Sanda-Mari	a Dra	agoş
2.3 Seminar coord	inate	or	Conf. Dr. Sanda-Maria Dragoş		Conf. Dr. Sanda-Maria Dragoş	
2.4 Year of study	2	2.5 Semester	4	2.6. Type of evaluation	E	2.7 Type of discipline Man
						· · ·

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 cours	e 2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 cours	e 28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course supp	ort, bib	liography, course note	S		20
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays				20	
Tutorship					3
Evaluations					14
Other activities:					
3.7 Total individual study hours		69			•
3.8 Total hours per semester		125			

3.9 Number of ECTS credits5	3.8 Total nours per semester	125
	3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1 curriculum	
4.2 competencies	• Basic programming skills in C standard.

5. Conditions (if necessary)

5.1 for the course	• A lecture class with video projector.
5.2 for the seminar /lab	• Laboratory with computers connected to the Internet and operating
activities	systems UNIX/ LINUX –like or access to an UNIX/LINUX server.

6. Specific competencies acquired

of Specific competencies a	
Professional competencies	 Identify basic concepts and models for computer systems. Identify and explain the basic architecture for the organization and management systems. Use techniques for installation, configuration and systems management.
Transversal competencies	 Applying organized and efficient work rules, the responsible attitudes of the teaching-scientific, for harnessing creative potential, the principles and rules of professional ethics. The use of effective learning methods and techniques, information, research and capacity to exploit the knowledge to adapt to a dynamic society and communication in Romanian and in an international language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	• Uptake of the learner the main concepts underlying operating
discipline	systems.
7.2 Specific objective of the	• Acquiring main facilities offered by the UNIX operating system.
discipline	• Acquiring skills in Shell programming and processing text files under UNIX.
	• Management of multitasking applications using UNIX processes.

8. Content

8.1 Course	Teaching methods	Remarks
1-3 Unix OS: external interfaces		
- The general structure of an operating system	Exposure:	
- Regular expressions to specify files; generic	description,	
specification	explanation,	
- Filters; general principles: sort, awk, sed, grep	examples, discussion	
- Unix Shells: sh, csh, ksh, bash; overview	of case studies	
- Useful Shell commands and external processes		
management		
- Shell programming;		
- The structure of directories in Unix system		
- The mount-ing concept		
- Symbolic and hard links		
4-7 Unix operating system: system calls, internal		
structures	Exposure:	
- Files and processes under Unix	description,	
- I / O using handle: open, close, lseek, read, write,	explanation,	
after, dup2	examples, discussion	
- File Protection	of case studies	
- Processes in Unix; process structure		
- Calls process management system: fork, wait,		
exit, exec *		
- Communications between processes: pipe, popen,		

FIFO	
- POSIX Threads	
8-9 Filesystems	
- General management issues disk and file	Exposure:
systems	description,
- Planning disk access	explanation,
- The internal structure of the disk and DOS	examples, discussion
file system; FAT	of case studies
- The internal structure of the disk and file	
system Windows NT & 2000; NTFS	
mechanism, MFT file	
- The internal structure of the disk and Unix	
file system; i-node mechanism	
10-14 General Theory of operating systems	
- Types of computers and operating systems.	Exposure:
Classifications	description,
- I/O Channel, multiple buffers.	explanation,
Multiprogramming.	examples, discussion
- General structure and functions of an operating	of case studies
system	
- The concept of process: specification,	
competition, semaphores, deadlock	
- Process Scheduling	
- Problems with memory management	
- Planning exchange between the internal memory	
and secondary	
Bibliography	

In English:

1. Albing, C., Vossen, J.P., Newhman, C., bash Cookbook: Solutions and Examples for bash Users, O'Reilly, USA, 2007.

- 2. Kernighan, B.W., Dennis, R.M., The C Programming Language, Prentice Hall, Massachusetts, 2012.
- 3. Stallings, W., Operating Systems: Internals and Design Principles, Pearson Education Limited, Essex, 2015.
- 4. Raymond, E.S., The Art of UNIX Programming, Addison-Wesley, Pearson Education Limited, USA, 2004.
- 5. Tanenbaum, A., Herbert, B., Modern Operating Systems, Pearson Education Limited, Essex, 2015.

In Romanian:

6. Boian, F., Vancea, A., Boian, R., Bufnea, D., Sterca, A., Cobarzan, C., Cojocar, D., Sisteme de operare, Ed. Risoprint, Cluj-Napoca, 2006.

8.2 Seminar / laboratory	Teaching methods	Remarks
1-2. Unix commands for working with files	Dialogue, debate,	
	case studies,	
	examples, proofs	
3. Shell 1	Dialogue, debate,	
	case studies,	
	examples, proofs	
4. sed and grep utilities	Dialogue, debate,	
	case studies,	
	examples, proofs	

5. awk utility	Dialogue, debate,
	case studies,
	examples, proofs
6. shell Programs	Dialogue, debate,
	case studies,
	examples, proofs
7-8. C programs; working with Unix files	Dialogue, debate,
	case studies,
	examples, proofs
9. UNIX Processes	Dialogue, debate,
	case studies,
	examples, proofs
10. Communications between Unix processes: pipe	Dialogue, debate,
	case studies,
	examples, proofs
11. Communications between Unix processes: FIFO	Dialogue, debate,
	case studies,
	examples, proofs
12. Unix-Threads	Dialogue, debate,
	case studies,
	examples, proof
13. Closing lab activities	Dialogue, debate,
	case studies,
	examples, proof
14. Practical exam	Dialogue, debate,
	case studies,
	examples, proof

Bibliography

In English:

- 1. Albing, C., Vossen, J.P., Newhman, C., bash Cookbook: Solutions and Examples for bash Users, O'Reilly, USA, 2007.
- 2. Kernighan, B.W., Dennis, R.M., The C Programming Language, Prentice Hall, Massachusetts, 2012.
- 3. Raymond, E.S., The Art of UNIX Programming, Addison-Wesley, Pearson Education Limited, USA, 2004.

In Romanian:

4. **Boian, F., Vancea, A., Boian, R., Bufnea, D., Sterca, A., Cobarzan, C., Cojocar, D.,** Sisteme de operare, Ed. Risoprint, Cluj-Napoca, 2006.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course exists in the curriculum in all major universities in Romania and abroad
- This course provides the basic knowledge that any administrator or developer must possess.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	- know the basic principle of the domain	Final exam	40%	
10.5 Seminar/lab activities	- application of these concepts in solving problems	Lab assignments	20%	
	- writing shells and creating Unix processes	Practical exam	40%	
10.6 Minimum performance standards				
• At least grade 5 (from a scale of 1 to 10) at the written exam, final project and laboratory work.				

Date	Signature of course coordinator	Signature of seminar coordinator
05.05.2017	Conf. Dr. Sanda-Maria Dragoş	Conf. Dr. Sanda-Maria Dragoş

Date of approval

Signature of the head of department

.....

Univ. Prof. Dr. Andreica Anca