SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science – Mathematics
1.5 Study cycle	Undergraduate
1.6 Study programme /	Computer Science, Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)		Fundamentals of Programming					
(ro)							
2.2 Course coordinator		Ca	Camelia Chira				
2.3 Seminar coordinator		Ca	Camelia Chira				
2.4. Year of study	1	2.5	1	2.6. Type of	C	2.7 Type of	Compulsory
		Semester		evaluation		discipline	
2.8 Code of the							
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	6	Of which: 3.2 course	2	3.3	2 sem
				seminar/laboratory	2 lab
3.4 Total hours in the curriculum	84	Of which: 3.5 course	28	3.6	56
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					8
Evaluations					18
Other activities:					

3.7 Total individual study hours	66
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	•

5. Conditions (if necessary)

5.1. for the course	 Projector 	
---------------------	-------------------------------	--

5.2.	for the seminar /lab
activ	vities

• Computers, Python programming language and environment

6. Specific competencies acquired

Professional competencies

- C1.1 Definition and description of programming paradigms and of language specific mechanisms, as well as identification of syntactic and semantic differences.
- C1.2 Description of existing software applications, on different levels of abstraction (architecture, classes, methods) using adequate basic knowledge.
- C1.3 Elaboration of adequate source code and testing of components in a well-known programming language, based on given specifications.
- C1.4 Testing applications based on testing plans.
- C1.5 Development of units of programs and corresponding documentation

Transversal competencies

- TC1 Application of efficient and rigorous working rules, manifest responsible attitudes towards the scientific and didactic fields, underlying the individual potential and respecting professional and ethical principles.
- TC2 Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	• To know the basic concepts of software engineering (design,		
discipline	implementation and maintenance) and to learn Python programming		
	language		
7.2 Specific objective of the	• To know the key concepts of programming		
discipline	• To know the basic concepts of software engineering		
	• To gain understanding of basic software tools used in development of		
	programs		
	• To learn Python programming language and tools to develop, run, test and debug programs		
	• To acquire and improve a programming style according to the best practical recommendations		

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to software development	• Interactive exposure	
 processes What is programming: algorithm, program, basic elements of the Python language, Python interpreter, basic roles in software engineering How to write programs: problem statement, requirements, feature driven development process Example: calculator 	ExplanationConversationExamplesDidactical demonstration	
 Procedural programming Compound types: list, tuple, dictionary Functions: test cases, definition, variable scope, calling, parameter passing Test-driven development (TDD), refactoring 	 Interactive exposure Explanation Conversation Examples Didactical 	

	demonstration
3. Modular programming	Interactive exposure
• What is a module: Python module definition,	• Explanation
variable scope in a module, packages, standard	• Conversation
module libraries, deployment	
• Eclipse + PyDev	Examples Didactical
- Lenpse + 1 ybev	demonstration
A Ugan defined types	
4. User defined types • How to define now data types: encapsulation	• Interactive exposure
 How to define new data types: encapsulation, data hiding in Python, guidelines 	ExplanationConversation
• Introduction to object-oriented programming	• Examples
• Exceptions	• Didactical
	demonstration
5. Object-oriented programming	• Interactive exposure
Abstract data types	• Explanation
• Implementation of classes in Python	• Conversation
Objects and classes: classes, objects, fields,	• Examples
methods, Python scope and namespace	• Didactical
	demonstration
6. Software design guidelines	Interactive exposure
• Layered architecture: UI layer, application	Explanation
layer, domain layer, infrastructure layer	Conversation
 How to organize source code: responsibilities, 	• Examples
single responsibility principle, separation of	Didactical
concerns, dependency, coupling, cohesion	demonstration
7. Program testing and inspection	Interactive exposure
 Testing methods: exhaustive testing, black box 	• Explanation
testing, white box testing	Conversation
 Automated testing, TDD 	• Examples
 File operations in Python 	Didactical
	demonstration
8. Recursion	Interactive exposure
 Notion of recursion 	Explanation
 Direct and indirect recursion 	Conversation
• Examples	• Examples
Computational complexity	Didactical
	demonstration
9. Search algorithms	Interactive exposure
 Problem definition 	Explanation
 Search methods: sequential, binary 	• Conversation
 Complexity of algorithms 	• Examples
	Didactical
	demonstration
10. Sorting algorithms	Interactive exposure
Problem definition	• Explanation
• Sort methods: Bubble Sort, Selection Sort,	• Conversation
Insertion Sort, Quick Sort	• Examples
• Complexity of algorithms	• Didactical
	demonstration
11. Problem solving methods (I)	Interactive exposure
• General presentation of the Backtracking,	• Explanation
Divide & Conquer methods	• Conversation
21,100 to Conquer memous	- Conversation

Algorithms and complexity	• Examples
• Examples	• Didactical
	demonstration
12. Problem solving methods (II)	Interactive exposure
 General presentation of the Greedy and 	• Explanation
Dynamic Programming methods	• Conversation
 Algorithms and complexity 	• Examples
• Examples	• Didactical
	demonstration
13. Revision	Interactive exposure
 Revision of most important topics covered by 	• Explanation
the course	• Conversation
	• Examples
	Didactical
	demonstration
14. Evaluation	

Bibliography

- 1. M.L. Hetland, Beginning Python: From Novice to Professional, Apress, 2005.
- 2. M. Frentiu, H.F. Pop, Fundamentals of Programming, Cluj University Press, 2006.
- 3. K. Beck, Test Driven Development: By Example. Addison-Wesley Longman, 2002. http://en.wikipedia.org/wiki/Test-driven_development
- 4. M. Fowler, Refactoring. Improving the Design of Existing Code, Addison-Wesley, 1999. http://refactoring.com/catalog/index.html
- 5. The Python Programming Language https://www.python.org/
- 6. The Python Standard Library https://docs.python.org/3/library/index.html
- 7. The Python Tutorial https://docs.python.org/3/tutorial/

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Simple Python programs	• Interactive exposure	
2. Procedural Programming	 Explanation 	
3. Modular Programming	 Conversation 	
4. Feature-driven software development	Didactical	
5. Abstract data types	demonstration	
6. Design principles		
7. Object-oriented programming		
8. Program design. Layered architecture		
9. Inspection and testing		
10. Recursion. Complexity of algorithms		
11. Search and sorting algorithms		
12. Problem solving methods: Backtracking		
13. Problem solving methods: Greedy		
14. Practical test		

Bibliography

- 1. M.L. Hetland, Beginning Python: From Novice to Professional, Apress, 2005.
- 2. M. Frentiu, H.F. Pop, Fundamentals of Programming, Cluj University Press, 2006.
- 3. K. Beck, Test Driven Development: By Example. Addison-Wesley Longman, 2002. http://en.wikipedia.org/wiki/Test-driven_development
- 4. M. Fowler, Refactoring. Improving the Design of Existing Code, Addison-Wesley, 1999. http://refactoring.com/catalog/index.html
- 5. The Python Programming Language https://www.python.org/
- 6. The Python Standard Library https://docs.python.org/3/library/index.html
- 7. The Python Tutorial https://docs.python.org/3/tutorial/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies.
- The course exists in the studying program of all major universities in Romania and abroad.
- The content of the course is considered by the software companies as important for average programming skills.

10. Evaluation

10. Evaluation			T
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	The correctness and completeness of the accumulated knowledge and the capacity to design and implement correct Python programs	Written exam	40%
10.5 Seminar/lab activities	Be able to design, test and debug a Python program	Practical exam	30%
	Correctness of laboratory assignments and documentation delivered during the semester	Program and documentation	30%
10.6 Minimum performance	Č		
<u> </u>			
A minimum grade	of 5 should be obtained at the	lab activity, practical test and	written examination.

Date	Signature of course coordinator	Signature of seminar coordinator	
Date of approval	Signature of the head of department		
	Prof.	Prof. dr. Anca Andreica	