SYLLABUS

1. Information regarding the programme Babeş Bolyai University 1.1 Higher education institution 1.2 Faculty **Faculty of Mathematics and Computer Science** 1.3 Department **Department of Mathematics** 1.4 Field of study **Mathematics** 1.5 Study cycle Bachelor **Mathematics Computer Science** 1.6 Study programme / Qualification

2. Information regarding the discipline

2.1 Name of the discipline N			Μ	LE0070 Matematical Logic and Number Theory			Theory	
2.2 Course coordinator				prof. dr. Andrei Marcus				
2.3 Seminar coordinator				prof. dr. Andrei Marcus				
2.4. Year of 1 2.5				2.6. Type of	1	2.7 Type of	Compulsory	
study		Semester		evaluation discipline				

3. Total estimated time (hours/semester of didactic activities)

	1.4		•		
3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					9
Evaluations					10
Other activities:					-
3.7 Total individual study hours 94					4

5.7 Total mulvidual study nouis	74
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	 Profound knowledge of high school math, especially of the following topics: elements of propozitional and predicate calculus operations with sets functions; injectivity, surjectivity, bijectivity number sets divizibility in Z; primes modular arithmetic counting arguments
	- counting arguments
4.2. competencies	- ability to perform symbolic calculations ability to operate with

 abstract concepts ability to do logical deductions ability to solve math problems based on aquired notice 	18
---	----

5. Conditions (if necessary)

5.1. for the course	blackboard, projector
5.2. for the seminar /lab	• blackboard
activities	

6. Specific competencies acquired

Professional competencies	 ability to perform symbolic calculations in various structures (oredered sets, lattices etc) ability to operate with abstract concepts ability to complex logical deductions ability to solve mathematics problems bases on aquired notions 	
Transversal competencies	 abstract reasoning applying mathematics in real life ability to solve problems 	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Basic knowledge on First Order Logic, Set Theory, and Arithmetic. Ability to solve difficult problems
7.2 Specific objective of the discipline	 students will operate with fundamental concepts of logic, set theory and number theory students will aquire knowlegde first order predicates, relations, equivalence, cardinals and ordinals, numver systems, divisibility, congruences, combinatorics. students solve problems, theoretical and practical, using instruments of modern mathematics.

8. Content

8.1 Course	Teaching methods	Remarks
Week 1. Propositional Logic. Formulas, truth values,	Explanation, dialogue,	
tautologies.	examples, proofs	
Week 2. Normal forms in propositional logic. First	Explanation, dialogue,	
order Logic. Predicates, quantifiers.	examples, proofs	
Week 3. Methods of mathematical proof.	Explanation, dialogue,	
Sets and operations with sets.	examples, proofs	
Week 4. Binary relations. Functions. Injective,	Explanation, dialogue,	
surjective, bijective functions.	examples, proofs	
Week 5. Equivalence relations and partitions, factor	Explanation, dialogue,	
sets, kernel of a function.	examples, proofs	
Week 6. Ordered sets, lattices.	Explanation, dialogue,	
	examples, proofs	

Week 7. Boole algebras and Boole rings.	Explanation, dialogue,	
	examples, proofs	
Week 8. Natural numbers. Peano axioms and the	Explanation, dialogue,	
Frege-Russell construction. Integers and rational	examples, proofs	
numbers.		
Week 9. The division algorithm. Divisibility.	Explanation, dialogue,	
	examples, proofs	
Week 10. Prime numbers.	Explanation, dialogue,	
	examples, proofs	
Week 11. Congruences. Modular arithmetic.	Explanation, dialogue,	
	examples, proofs	
Week 12. Theorems of Fermat, Euler and Wilson.	Explanation, dialogue,	
Applications to Cryptography.	examples, proofs	
Week 13. Some Diophantian equations.	Explanation, dialogue,	
Week 10. Some Disphantian equations.	examples, proofs	
Week 14. Elements of Combinatorics. Counting	Explanation, dialogue,	
arguments.	examples, proofs	
Bibliography	examples, proois	
 [2] Breaz, S.; Covaci, R.: <i>Elemente de logica, teoria mu</i> Europene, Cluj-Napoca, 2006. 8.2 Seminar / laboratory 	Teaching methods	Remarks
	5	Remarks
Week 1. Propositional Logic. Formulas, truth values,	Explanation, dialogue,	
tautologies.	examples, proofs	
Week 2. Normal forms in propositional logic. First	Explanation, dialogue,	
order Logic. Predicates, quantifiers.	examples, proofs	
Week 3. Methods of mathematical proof.	Explanation, dialogue,	
	1 0	
Sets and operations with sets.	examples, proofs	
Week 4. Binary relations. Functions. Injective,	Explanation, dialogue,	
Week 4. Binary relations. Functions. Injective, surjective, bijective functions.	Explanation, dialogue, examples, proofs	
Week 4. Binary relations. Functions. Injective, surjective, bijective functions. Week 5. Equivalence relations and partitions, factor	Explanation, dialogue, examples, proofs Explanation, dialogue,	
Week 4. Binary relations. Functions. Injective, surjective, bijective functions. Week 5. Equivalence relations and partitions, factor sets, kernel of a function.	Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs	
Week 4. Binary relations. Functions. Injective, surjective, bijective functions. Week 5. Equivalence relations and partitions, factor	Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue,	
Week 4. Binary relations. Functions. Injective, surjective, bijective functions.Week 5. Equivalence relations and partitions, factor sets, kernel of a function.Week 6. Ordered sets, lattices.	Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs	
Week 4. Binary relations. Functions. Injective, surjective, bijective functions. Week 5. Equivalence relations and partitions, factor sets, kernel of a function.	Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue,	
 Week 4. Binary relations. Functions. Injective, surjective, bijective functions. Week 5. Equivalence relations and partitions, factor sets, kernel of a function. Week 6. Ordered sets, lattices. Week 7. Boole algebras and Boole rings. 	Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs	
 Week 4. Binary relations. Functions. Injective, surjective, bijective functions. Week 5. Equivalence relations and partitions, factor sets, kernel of a function. Week 6. Ordered sets, lattices. Week 7. Boole algebras and Boole rings. Week 8. Natural numbers. Peano axioms and the 	Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue,	
 Week 4. Binary relations. Functions. Injective, surjective, bijective functions. Week 5. Equivalence relations and partitions, factor sets, kernel of a function. Week 6. Ordered sets, lattices. Week 7. Boole algebras and Boole rings. 	Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs	
 Week 4. Binary relations. Functions. Injective, surjective, bijective functions. Week 5. Equivalence relations and partitions, factor sets, kernel of a function. Week 6. Ordered sets, lattices. Week 7. Boole algebras and Boole rings. Week 8. Natural numbers. Peano axioms and the Frege-Russell construction. Integers and rational 	Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs	
 Week 4. Binary relations. Functions. Injective, surjective, bijective functions. Week 5. Equivalence relations and partitions, factor sets, kernel of a function. Week 6. Ordered sets, lattices. Week 7. Boole algebras and Boole rings. Week 8. Natural numbers. Peano axioms and the Frege-Russell construction. Integers and rational numbers. Week 9. The division algorithm. Divisibility. 	 Explanation, dialogue, examples, proofs 	
 Week 4. Binary relations. Functions. Injective, surjective, bijective functions. Week 5. Equivalence relations and partitions, factor sets, kernel of a function. Week 6. Ordered sets, lattices. Week 7. Boole algebras and Boole rings. Week 8. Natural numbers. Peano axioms and the Frege-Russell construction. Integers and rational numbers. 	Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs	
 Week 4. Binary relations. Functions. Injective, surjective, bijective functions. Week 5. Equivalence relations and partitions, factor sets, kernel of a function. Week 6. Ordered sets, lattices. Week 7. Boole algebras and Boole rings. Week 8. Natural numbers. Peano axioms and the Frege-Russell construction. Integers and rational numbers. Week 9. The division algorithm. Divisibility. Week 10. Prime numbers. 	Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs	
 Week 4. Binary relations. Functions. Injective, surjective, bijective functions. Week 5. Equivalence relations and partitions, factor sets, kernel of a function. Week 6. Ordered sets, lattices. Week 7. Boole algebras and Boole rings. Week 8. Natural numbers. Peano axioms and the Frege-Russell construction. Integers and rational numbers. Week 9. The division algorithm. Divisibility. Week 10. Prime numbers. 	Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs	
 Week 4. Binary relations. Functions. Injective, surjective, bijective functions. Week 5. Equivalence relations and partitions, factor sets, kernel of a function. Week 6. Ordered sets, lattices. Week 7. Boole algebras and Boole rings. Week 8. Natural numbers. Peano axioms and the Frege-Russell construction. Integers and rational numbers. Week 9. The division algorithm. Divisibility. Week 10. Prime numbers. Week 11. Congruences. Modular arithmetic. 	Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs	
 Week 4. Binary relations. Functions. Injective, surjective, bijective functions. Week 5. Equivalence relations and partitions, factor sets, kernel of a function. Week 6. Ordered sets, lattices. Week 7. Boole algebras and Boole rings. Week 8. Natural numbers. Peano axioms and the Frege-Russell construction. Integers and rational numbers. Week 9. The division algorithm. Divisibility. Week 10. Prime numbers. Week 11. Congruences. Modular arithmetic. Week 12. Theorems of Fermat, Euler and Wilson. 	Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs	
 Week 4. Binary relations. Functions. Injective, surjective, bijective functions. Week 5. Equivalence relations and partitions, factor sets, kernel of a function. Week 6. Ordered sets, lattices. Week 7. Boole algebras and Boole rings. Week 8. Natural numbers. Peano axioms and the Frege-Russell construction. Integers and rational numbers. Week 9. The division algorithm. Divisibility. Week 10. Prime numbers. Week 11. Congruences. Modular arithmetic. Week 12. Theorems of Fermat, Euler and Wilson. Applications to Cryptography. 	Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs	
 Week 4. Binary relations. Functions. Injective, surjective, bijective functions. Week 5. Equivalence relations and partitions, factor sets, kernel of a function. Week 6. Ordered sets, lattices. Week 7. Boole algebras and Boole rings. Week 8. Natural numbers. Peano axioms and the Frege-Russell construction. Integers and rational numbers. Week 9. The division algorithm. Divisibility. Week 10. Prime numbers. Week 11. Congruences. Modular arithmetic. Week 12. Theorems of Fermat, Euler and Wilson. Applications to Cryptography. 	Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs	
 Week 4. Binary relations. Functions. Injective, surjective, bijective functions. Week 5. Equivalence relations and partitions, factor sets, kernel of a function. Week 6. Ordered sets, lattices. Week 7. Boole algebras and Boole rings. Week 8. Natural numbers. Peano axioms and the Frege-Russell construction. Integers and rational numbers. Week 9. The division algorithm. Divisibility. Week 10. Prime numbers. Week 11. Congruences. Modular arithmetic. Week 12. Theorems of Fermat, Euler and Wilson. Applications to Cryptography. Week 13. Some Diophantian equations. 	Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs	
 Week 4. Binary relations. Functions. Injective, surjective, bijective functions. Week 5. Equivalence relations and partitions, factor sets, kernel of a function. Week 6. Ordered sets, lattices. Week 7. Boole algebras and Boole rings. Week 8. Natural numbers. Peano axioms and the Frege-Russell construction. Integers and rational numbers. Week 9. The division algorithm. Divisibility. Week 10. Prime numbers. Week 11. Congruences. Modular arithmetic. Week 12. Theorems of Fermat, Euler and Wilson. Applications to Cryptography. 	Explanation, dialogue, examples, proofs Explanation, dialogue, examples, proofs	

- 1. Epp, S.: Discrete Mathematics with Applications. 4th ed. Brooks/Cole, Boston, 2011.
- 2. Krantz, S. G.: Discrete Mathematics Demystified. McGraw-Hill, New York, 2009.

3. Levy, A.: Basic Set Theory. Dover Publications, New York, 1979.

4. Lidl, R., Pilz, G.: Applied Abstract Algebra. Springer-Verlag, Berlin, 1998.

5. Ross, K. A., Wright Ch., Discrete Mathematics. Pearson Education, New Jersey, 2003.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Such a course (often called Discrete Mathematics) exists in the curricula of all major universities in Romania and abroad;
- Mathematical Logic and Number Theory are fundamental topics and have multiple applications in other branches of mathematics, as well as in Computer Science and in Philosophy.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	 know the basic principles of the field; apply the new concepts	- Two written tests	80%			
10.5 Seminar/lab activities	- problem solving	- homeworks	20%			
10.6 Minimum performance standards						
to aquire minimum 5 (out of 10) points to pass the exam						

DateSignature of course coordinatorSignature of seminar coordinator05.05.2017Prof.dr. Andrei MărcuşProf.dr. Andrei Mărcuş

Date of approval

Signature of the head of department

.....

Prof. dr. Octavian Agratini