1. Information regarding the programme

1.1 Higher education institution	Babes-Bolyai University
1.2 Faculty	Faculty of Matematics and Computer Science
1.3 Department	Departament of Matematics
1.4 Field of study	Matematics
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Matematics-Computer Science

2. Information regarding the discipline

2.1 Name of the discipline			Algebra 1 (Linear Algebra)				
2.2 Course c	din		Assistant Professor PhD. Cosmin Pelea				
2.3 Seminar coordinator			Assistant Professor PhD. Cosmin Pelea				
2.4. Year of study	1	2.5 Semester		2.6. Type of evaluation	E	2.7 Type of discipline	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:	hours				
Learning using manual, course support, bibliography, course notes	28				
Additional documentation (in libraries, on electronic platforms, field documentation)	20				
Preparation for seminars/labs, homework, papers, portfolios and essays	28				
Tutorship	14				
Evaluations	4				
Other activities:					
3.7 Total individual study hours	94				
3.8 Total hours per semester	150				
3.9 Number of ECTS credits	6				

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab activities	

6. Specific competencies acquired

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	\bullet To introduce the basic notions of linear algebra.
7.2 Specific objective of the discipline	To introduce some basic results on vector spaces, matrices, systems of linear equations, eigenvalues, eigenvectors and quadratic forms.

8. Content

8.1 Course	Teaching methods	Remarks
1. Groups. Rings. Fields	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
2. Vector spaces. Subspaces. Generated subspace	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
3. Linear applications	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
4. Bases	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
5. Dimension	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
6. Matrices and linear applications	- Interactive exposure	

	- Explanation - Conversation - Didactical demonstration	
7. Alternating multilinear applications	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
8. Determinants	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
9. The inverse and the rank of a matrix	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
10. Systems of linear equations	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
11. Eigenvectors and eigenvalues	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
12. Diagonalisable matrices. Hamilton-Cayley Theorem	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
13. Bilinear forms. The matrix of a bilinear form	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
14. Quadratic forms. The canonical form of a quadratic form	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
Bibliography 1. R. COVACI: Algebra si programare liniara, Litografia UBB, Cluj-Napoca, 1986. 2. I.D. ION, N. RADU, Algebra (ed.4), Editura Didactica si Pedagogica, 1990. 3. C. NASTASESCU, I. STANESCU, C. NITA, Matematica, Elemente de algebra superioara, Editura Didactica si Pedagogica, Bucuresti, 1995. 4. I. PURDEA, I. POP, Algebra, Editura GIL, Zalau, 2003.		

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Groups. Rings. Fields.	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
2. Review: matrices, determinants, systems of linear equations.	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
3. Vector spaces. Subspaces. Generated subspace	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
4. Linear applications	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
5. Bases	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
6. Dimension	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
7. Matrices and linear applications	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
8. Determinants	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
9. The inverse and the rank of a matrix	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
10. Systems of linear equations	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
11. Eigenvectors and eigenvalues	- Interactive exposure	

	- Explanation - Conversation - Didactical demonstration	
12. Diagonalisable matrices. Hamilton-Cayley Theorem	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
13. Bilinear forms. The matrix of a bilinear form	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
14. Quadratic forms. The canonical form of a quadratic form	- Interactive exposure - Explanation - Conversation - Didactical demonstration	
Bibliography 1. I.D. ION, C. NITA, D. POPESCU, N. RADU: Probleme de algebra, Editura Didactica si Pedagogica, Bucuresti, 1981. 2. C. NASTASESCU, I. STANESCU, C. NITA, Matematica, Elemente de algebra superioara, Editura Didactica si Pedagogica, Bucuresti, 1995. 3. I. PURDEA, C. PELEA, Probleme de algebra, EIKON, Cluj-Napoca, 2008.		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course presents notions which often appear in other undergraduate courses.
- The course offers a sufficiently general background for some highschool algebra topics and the opportunity to develop some problem solving skills useful for further teaching activities.

10. Evaluation

10.4 Course	Knowledge of basic concepts	Tests	25%
	Knowledge of basic results	Final exam.	25%
10.5 Seminar/laborator	Examples and problem solving	Final exam.	50%
10.6 Minimum performance standards			
The final grade must be at least 5.			

Date
3.05.2017

Signature of course coordinator
Assist. Prof. PhD. Cosmin Pelea

Signature of seminar coordinator Assist. Prof. PhD. Cosmin Pelea

Date of approval

