
SYLLABUS

1. Information regarding the programme

1.1 Higher education institution Babeş Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Department Department of Computer Science

1.4 Field of study Computer Science

1.5 Study cycle Master

1.6 Study programme /

Qualification

Software Engineering

2. Information regarding the discipline

2.1 Name of the discipline Software design

2.2 Course coordinator Prof.PhD. Bazil Parv

2.3 Seminar coordinator Prof.PhD. Bazil Parv

2.4. Year of

study

1 2.5

Semester

2 2.6. Type of

evaluation

E 2.7 Type of

discipline

elective

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week 3 Of which: 3.2 course 2 3.3

seminar/laboratory

1

3.4 Total hours in the curriculum 42 Of which: 3.5 course 28 3.6

seminar/laboratory

14

Time allotment: Hours

Learning using manual, course support, bibliography, course notes 25

Additional documentation (in libraries, on electronic platforms, field documentation) 25

Preparation for seminars/labs, homework, papers, portfolios and essays 55

Tutorship 14

Evaluations 14

Other activities: -

3.7 Total individual study hours 133

3.8 Total hours per semester 175

3.9 Number of ECTS credits 7

4. Prerequisites (if necessary)

4.1. curriculum • Fundamentals of programming

• Object-oriented programming

• Programming paradigms

4.2. competencies • Average programming skills

5. Conditions (if necessary)

5.1. for the course • Videoprojector, Internet access

5.2. for the seminar /lab

activities

• Computers, Internet access, UML tool

6. Specific competencies acquired
P

ro
fe

ss
io

n
a
l

co
m

p
et

en
ci

es
 • Understanding of the software design from the engineering perspective;

• Understanding of the software design concepts and principles

• Understanding of the software design process and its activities;

• Proficient use of tools and languages specific to software systems development

• Knowing the specifics of main architectural and design patterns and how to apply them to

specific projects.

T
ra

n
sv

er
sa

l

co
m

p
et

en
ci

es
 • Professional communication skills; concise and precise description, both oral and written,

of professional results,

• Independent and team work capabilities; able to fulfill different roles

• Antepreneurial skills;

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course Teaching methods Remarks

1. Introduction to software engineering design.

Motivation and general design concepts. Overview of

the software engineering design. Functional and non-

functional requirements. Quality attributes. Constraints

• Interactive exposure
• Explanation
• Conversation
• Didactical

demonstration

2. Software design process. Main phases: architectural

design, detailed design, construction design, data

design, UI design. Inputs and deliverables

• Interactive exposure
• Explanation
• Conversation
• Didactical

demonstration

3. Software architecture 1. Definitions. Principles.

Fundamentals of requirements engineering. Designing

the software architecture

• Interactive exposure
• Explanation
• Conversation
• Didactical

demonstration

4. Software architecture 2. Architectural styles and

patterns - overview and history. Architectural patterns

for data-centered systems

• Interactive exposure
• Explanation
• Conversation
• Didactical

demonstration

5. Software architecture 3. Architectural patterns for data-

flow systems

• Interactive exposure
• Explanation
• Conversation
• Didactical

demonstration

7.1 General objective of the

discipline

• Know and understand fundamental concepts of software design.

• Be able to apply the appropriate architectural and design patterns to

different programming projects

7.2 Specific objective of the

discipline

At the end of the course, students

• know the main concepts and principles of software design

• have a good understanding of the following terms: software architecture

definition(s), architectural styles and models, architecture definition

language(s); detailed design; design pattern, construction design;

• learn the importance of architectural and detailed design and how to use

tools for these tasks;

• know several software system types (taken from real-world applications)

and the best recommended architectural styles and design patterns.

6. Software architecture 4. Architectural patterns for

distributed systems

• Interactive exposure
• Explanation
• Conversation
• Didactical

demonstration

7. Software architecture 5. Architectural patterns for

interactive and hierarchical systems

• Interactive exposure
• Explanation
• Conversation
• Didactical

demonstration

8. Detailed design 1. Overview of the detailed design.

Structural and behavioral design of components.

Design principles

• Interactive exposure
• Explanation
• Conversation
• Didactical

demonstration

9. Detailed design 2. Creational design patterns: Abstract

Factory, Factory Method, Builder, Prototype,

Singleton.

• Interactive exposure
• Explanation
• Conversation
• Didactical

demonstration

10. Detailed design 3. Structural design patterns: Adapter,

Bridge, Composite, Façade

• Interactive exposure
• Explanation
• Conversation
• Didactical

demonstration

11. Detailed design 4. Behavioral design patterns: Iterator,

Observer, Strategy, Template Method

• Interactive exposure
• Explanation
• Conversation
• Didactical

demonstration

12. Construction design. Flow-, state-, and table-based

construction design. Programming design language,

styles, and quality evolution.

• Interactive exposure
• Explanation
• Conversation
• Didactical

demonstration

13. Design evolution 1. Architecture refactoring. Detailed

design refactoring

• Interactive exposure
• Explanation
• Conversation
• Didactical

demonstration

14. Design evolution 2. Construction design refactoring • Interactive exposure

• Conversation

Bibliography
1. BASS, L., CLEMENTS, P., KAZMAN R.: Software Architecture in Practice, 2nd ed., Addison-Wesley, 2003

2. FOWLER, MARTIN: Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999

3. KRUCHTEN, PH.: Architectural Blueprints – The 4+1 View Model of Software Architecture, IEEE Software 12

(6), 1995, pp. 42-50.

4. MARTIN, ROBERT CECIL: Agile software development: principles, patterns, and practices, Pearson Education,

2002

5. McCONNELL, STEVE: Code Complete, 2nd ed., Microsoft Press, 2004

6. OTERO, C.E.: Software Engineering Design, CRC Press, 2012.

site: http://softwareengineeringdesign.com/Default.htm

7. SHAW, M.: The Coming-of-Age of Software Architecture Research, in Proc. of the 23rd ICSE, IEEE Comp. Soc.

2001, 656, [http://www.cs.cmu.edu/afs/cs.cmu.edu/project/vit/ ftp/pdf/shaw-keynote-rev.pdf]

8. SHAW, M., GARLAN, D.: Software Architecture: Perspectives on an Emerging Discipline, Prentice-Hall, 1996.

8.2 Seminar / laboratory Teaching methods Remarks

1. Administrivia Conversation, debate, case

studies, presentations

Seminar is

organized as a

total of 14

hours – 2 hours

every other

week

2. Establishing the target application. First miniproject

started

Conversation, debate, case

studies, examples

3. Work on miniproject 1 Exposure, debate, case studies,

examples

4. Miniproject 1 due. Second miniproject started Exposure, debate, case studies,

examples

5. Work on miniproject 2 Exposure, debate, case studies,

examples

6. Miniproject 2 due. Detailed design issues Exposure, debate, case studies,

examples

7. Final review and project evaluation Exposure, live demos

Bibliography

Students will serch and use software design documentation

• on the department server (win/labor/Romana/master/SED)

• on the web, using main CS databases

9. Corroborating the content of the discipline with the expectations of the epistemic community,

professional associations and representative employers within the field of the program

• This course follows the IEEE and ACM Curriculla Recommendations for Software Engineering studies;

• Courses with similar content are taught in the major universities in Romania offering similar study

programs;

• Course content is considered very important by the software companies for improving average software

development skills

10. Evaluation

Type of activity 10.1 Evaluation criteria 10.2 Evaluation

methods

10.3 Share in the

grade (%)

10.4 Course • knowing the basic concepts

of software design

• applying different

architectural styles and

design patterns to different

problem domains

Written exam

40%

10.5 Seminar/lab activities • be able to study and review

literature regarding software

design

• be able to solve a problem

using different architectural

and design patterns

• be able to evaluate a software

design

• Miniproject 1 work

• Miniproject 2 work

• Seminar/lab

attendance

• Default

20%

20%

10%

10%

10.6 Minimum performance standards
• At least grade 5 (from a scale of 1 to 10) at written exam and miniproject work.

Date Signature of course coordinator Signature of seminar coordinator

April 29, 2017 Prof.PhD. Bazil PARV Prof.PhD. Bazil PARV

Date of approval Signature of the head of department

... Prof.PhD. Anca ANDREICA

