SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Software Engineering
Qualification	

2. Information regarding the discipline

2.1 Name of the	dis	cipline	So	ftware design			
2.2 Course coor	2.2 Course coordinator Prof.PhD. Bazil Parv						
2.3 Seminar coordinator Prof.PhD. Bazil Parv							
2.4. Year of	1	2.5	2	2.6. Type of	Е	2.7 Type of	elective
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					Hours
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					
Other activities:					-
3.7 Total individual study hours133					

3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Fundamentals of programming
	Object-oriented programming
	Programming paradigms
4.2. competencies	Average programming skills
5. Conditions (if necessary)	

5.1. for the course	Videoprojector, Internet access
5.2. for the seminar /lab	• Computers, Internet access, UML tool
activities	

6. Specific competencies acquired

Professional competencies	 Understanding of the software design from the engineering perspective; Understanding of the software design concepts and principles Understanding of the software design process and its activities; Proficient use of tools and languages specific to software systems development Knowing the specifics of main architectural and design patterns and how to apply them to specific projects.
Transversal competencies	 Professional communication skills; concise and precise description, both oral and written, of professional results, Independent and team work capabilities; able to fulfill different roles Antepreneurial skills;

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Know and understand fundamental concepts of software design. Be able to apply the appropriate architectural and design patterns to different programming projects
7.2 Specific objective of the discipline	 At the end of the course, students know the main concepts and principles of software design have a good understanding of the following terms: software architecture definition(s), architectural styles and models, architecture definition language(s); detailed design; design pattern, construction design; learn the importance of architectural and detailed design and how to use tools for these tasks; know several software system types (taken from real-world applications) and the best recommended architectural styles and design patterns.

8. Content

8.1 Course	Teaching methods	Remarks
 Introduction to software engineering design. Motivation and general design concepts. Overview of the software engineering design. Functional and non- functional requirements. Quality attributes. Constraints 	 Interactive exposure Explanation Conversation Didactical demonstration 	
2. <i>Software design process</i> . Main phases: architectural design, detailed design, construction design, data design, UI design. Inputs and deliverables	 Interactive exposure Explanation Conversation Didactical demonstration 	
3. <i>Software architecture 1</i> . Definitions. Principles. Fundamentals of requirements engineering. Designing the software architecture	 Interactive exposure Explanation Conversation Didactical demonstration 	
4. <i>Software architecture 2</i> . Architectural styles and patterns - overview and history. Architectural patterns for data-centered systems	 Interactive exposure Explanation Conversation Didactical demonstration 	
5. <i>Software architecture 3</i> . Architectural patterns for data- flow systems	 Interactive exposure Explanation Conversation Didactical demonstration 	

6.	Software architecture 4. Architectural patterns for	Interactive exposure	
	distributed systems	• Explanation	
		 Didactical 	
		demonstration	
7.	Software architecture 5. Architectural patterns for	Interactive exposure	
	interactive and hierarchical systems	• Explanation	
		Conversation Didactical	
		demonstration	
8.	Detailed design 1. Overview of the detailed design.	Interactive exposure	
	Structural and behavioral design of components.	• Explanation	
	Design principles	Conversation Didactical	
		demonstration	
9.	Detailed design 2. Creational design patterns: Abstract	Interactive exposure	
	Factory, Factory Method, Builder, Prototype,	• Explanation	
	Singleton.	Conversation	
		Didactical demonstration	
10	Detailed design 3 Structural design patterns: Adapter	Interactive exposure	
10.	Bridge Composite Facade	• Explanation	
	Bridge, Composite, i uşude	• Conversation	
		• Didactical	
11	Detailed design 4 Dehavioral design patternes Iterator	Interactive exposure	
11.	Observer, Strategy Templete Method	Explanation	
	Observer, Strategy, Template Method	Conversation	
		Didactical	
		demonstration	
12.	<i>Construction design</i> . Flow-, state-, and table-based	Interactive exposure Explanation	
	construction design. Programming design language,	Conversation	
	styles, and quality evolution.	Didactical	
		demonstration	
13.	Design evolution 1. Architecture refactoring. Detailed	Interactive exposure	
	design refactoring	 Explanation Conversation 	
		Didactical	
		demonstration	
14.	Design evolution 2. Construction design refactoring	• Interactive exposure	
		Conversation	
Bib	liography		
1.	BASS, L., CLEMENTS, P., KAZMAN R.: Software Archit	ecture in Practice, 2nd ed., Addisor	n-Wesley, 2003
2.	FOWLER, MARTIN: Refactoring: Improving the Design of KDUCUTEN, DU, Architectural Discovering, The 4+1 Vie	Existing Code, Addison-Wesley, I	.999 EEE Software 12
з.	KRUCHTEN, PH.: Architectural blueprints – The $4+1$ vie	v Model of Software Architecture, I	EEE Software 12
4.	MARTIN, ROBERT CECIL: Agile software development:	principles, patterns, and practices.	Pearson Education.
	2002		,
5.	McCONNELL, STEVE: Code Complete, 2nd ed., Microsof	t Press, 2004	
6.	OTERO, C.E.: Software Engineering Design, CRC Press, 2	012.	
_	site: http://softwareengineeringdesign.com/Default.htm		
7.	SHAW, M.: The Coming-of-Age of Software Architecture F	esearch, in Proc. of the 23rd ICSE,	IEEE Comp. Soc.
8	2001, 656, [http://www.cs.cmu.edu/afs/cs.cmu.edu/project/	(11/ Itp/pdf/shaw-keynote-rev.pdf]	ontico Hall 1006
8.2	Smaw, M., OARLAN, D.: Software Architecture. Terspec	Teaching methods	Remarks
1	Administrivia	Conversation debate case	Seminar is
1.	/ withinfour viu	studies presentations	organized as a
2	Establishing the target application First miniproject	Conversation debate case	total of 14
2.	started	studies examples	hours -2 hours
3	Work on miniproject 1	Exposure debate case studies	every other
5.	to the on miniproject 1	examples	week
		champies	

4. Miniproject 1 due. Second miniproject started	Exposure, debate, case studies,	
	examples	
5. Work on miniproject 2	Exposure, debate, case studies,	
	examples	
6. Miniproject 2 due. Detailed design issues	Exposure, debate, case studies,	
	examples	
7. Final review and project evaluation	Exposure, live demos	
Bibliography		
Students will serch and use software design documentatio	n	
• on the department server (win/labor/Romana/mast	er/SED)	

• on the web, using main CS databases

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course follows the IEEE and ACM Curriculla Recommendations for Software Engineering studies;
- Courses with similar content are taught in the major universities in Romania offering similar study programs;
- Course content is considered very important by the software companies for improving average software development skills

10. Evaluation

Type of activity	10	0.1 Evaluation criteria	10.2 Evaluation	10.3 Share in the			
			methods	grade (%)			
10.4 Course	•	knowing the basic concepts of software design applying different architectural styles and design patterns to different problem domains	Written exam	40%			
10.5 Seminar/lab activities	•	be able to study and review literature regarding software design be able to solve a problem using different architectural and design patterns be able to evaluate a software design	 Miniproject 1 work Miniproject 2 work Seminar/lab attendance Default 	20% 20% 10%			
10.6 Minimum performance standards							
• At least grade 5 (from a scale of 1 to 10) at written exam and miniproject work.							

Date	Signature of course coordinator	Signature of seminar coordinator
April 29, 2017	Prof.PhD. Bazil PARV	Prof.PhD. Bazil PARV
Date of approval		Signature of the head of department
		Prof.PhD. Anca ANDREICA