SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science/ Applied Computational Intelligence
Qualification	

2. Information regarding the discipline

2.1 Name of the	dis	scipline	Introduction to Natural Language Processing				
2.2 Course coordinator Lecturer Ph.D. Lupea Mihaiela							
2.3 Seminar coordinator				Lecturer Ph.D. Lupea Mihaiela			
2.4. Year of	3	2.5	2	2.6. Type of	C	2.7 Type of	optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					40
Preparation for seminars/labs, homework, papers, portfolios and essays					49
Tutorship					10
Evaluations					10
Other activities:					-
3.7 Total individual study hours		139			•

3.7 Total individual study hours	139
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Formal languages, Data structures, Graphs Algorithms
4.2. competencies	Programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	Laboratory with computers; high level programming language
activities	environment (.NET or any Java environment a.s.o.)

6. Specific competencies acquired

Professional competencies	 Assimilation of mathematical concepts and formal models to understand, verify and validate software systems; Advanced ability to approach, model and solve phenomena and problems from natural language and economy using fundamental knowledge from mathematics and computer science; Ability to approach and solve complex problems using various techniques of computational intelligence; Proficient use of methodologies and tools specific to programming languages and software systems.
Transversal competencies	 Etic and fair behavior, committment to professional deontology Team work capabilities; able to fulfill different roles Professional communication skills; concise and precise description, both oral and written, of professional results, negociation abilities; Antepreneurial skills; working with economical knowledge; continuous learning Good English communication skills

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To introduce the basic principles, domains and tasks in Natural Language Processing (NLP) To understand the current state of the art in order to realize an overview of a specific domain in NLP and to implement a NLP tool.
7.2 Specific objective of the discipline	 Apply and use formal models (logics, grammars, parsing), statistic models (HMM), artificial intelligence algorithms and techniques to solve different tasks at the syntactic level (POS-tagging, parsing, chunking), and semantic level (word sense disambiguation, document summarization, anaphora resolution) in Natural Language Processing domain.

8. Content

8.1 Course	Teaching methods	Remarks
Course 1. Natural Language Processing (NLP): stages, domains,	Exposure: description, explanation, examples,	
applications.	debate, dialogue	
Course 2.	Exposure: description, explanation, examples,	
-WordNet and RoWordNet - knowledge structure, semantic relations, lexical relations.	debate, dialogue	
- WordNetSimilarity tool and similarity measures for words.		
Course 3. Part of speech tagging.	Exposure: description,	
- tools for part-of-speech tagging in English.	explanation, examples,	
- tools for part-of-speech tagging in Romanian	debate, dialogue	
Course 4. Syntactic parsing	Exposure: description,	
- grammar rules for English - sentence level construction;	explanation, examples,	
- Cocke-Kasami-Yonger (CKY) algorithm;	debate, dialogue	

Course 5. Statistical parsing - Probabilistic Context-Free Grammars (PCFG); - Probabilistic CKY (Cocke-Kasami-Yonger) parsing of PCFGs.	Exposure: description, explanation, examples, debate, dialogue
Course 6. Hidden Markov Model - Markov chains, Hidden Markov Model(HMM); - three canonical problems associated with HMM - the forward algorithm; the Viterbi algorithm.	Exposure: description, explanation, examples, debate, dialogue
Course 7. Word Sense Disambiguation - dictionary and graph based approaches.	Exposure: description, explanation, examples, debate, dialogue
Course 8. Document summarizationapproaches based on clustering, graphs.tools for summarization.	Exposure: description, explanation, examples, debate, dialogue
Course 9. Textual entailment	Exposure: description, explanation, examples, debate, dialogue
Course 10. Anaphora resolution - Mitkov's algorithm - tools for co-reference resolution	Exposure: description, explanation, examples, debate, dialogue
Course 11. Sentiment analysis	Exposure: description, explanation, examples, debate, dialogue
Course 12. Students' presentations of the practical project.	Exposure: description, explanation, examples, debate, dialogue

Bibliography

- 1. J.ALLEN: Natural language understanding, Benjamin/Cummings Publisher, 2nd ed., 1995.
- 2. E. CHARNIAK: Statistical language learning, MIT press, 1996.
- 3. B.CARPENTER: ALE: The attribute logic engine. User's guide. Carnegie Mellon University, 1994.
- 4. D.FEHRER et al: Description logics for natural language processing. In Proc. of the 1994 Description Logic Workshop (DL'94), 1994.
- 5. H. HELBIG: Knowledge Representation and the Semantics of Natural Language, Springer, 2006.
- 6. D.JURAFSKY, J.MARTIN: Speech and language processing, Prentice Hall, 2000.
- 7. C.MANNING, H.SCHUTZE: Foundation of statistical natural language processing, MIT, 1999.
- 8. R. MITKOV(ed): The Oxford Handbook of Computational Linguistics, Oxford University Press, 2003.
- 9. D.TATAR: Inteligenta artificiala: demonstrare automata de teoreme, prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2001.
- 10. D. TATAR: Inteligenta artificiala. Aplicatii in prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2003, ISBN 973-650-100-01.

8.2	Seminar / laboratory	Teaching methods	Remarks
1.	Working with WordNet, Romanian WordNet and	Explanation,	The seminar/lab is
	WordNetSimilarity.	dialogue, case studies	structured as 2 hours
			classes every second week
2.	Students' presentations of a NLP domain and a corresponding tool.	Dialogue, debate	
3.	Working with dedicated parsers and taggers	Explanation,	

	(Stanford, CST tools, Racai tools)	dialogue, case studies
4.	Students' presentations of a NLP domain and a corresponding tool.	Dialogue, debate
5.	Working with dedicated tools for information extraction and summarization	Explanation, dialogue, case studies
6.	Working with dedicated tools for anaphora and co-reference resolution	Explanation, dialogue, case studies
7.	Students' presentations of the practical projects.	Dialogue, debate

Bibliography

- 1. Rada Mihalcea: www.cs.unt.edu/~rada/downloads.html
- 2. Resurse lingvistice in limba romana: www.racai.ro

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The optimization of the search on Web, the interfaces in natural language and the recent aspects of text mining need a good understanding of Natural Language Processing.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	know the theoretical concepts of the domain;apply the course methods, algorithms in problem solving	Written exam	40%	
10.5 Seminar/lab activities	- know to write an overview of a specific domain	Presentation of a NLP domain and a corresponding tool.	20%	
	- be able to implement course algorithms	Practical project - implementation of a NLP tool based on the studied methods.	40%	
10.6 Minimum performance standards				
➤ At least grad	e 5 (from a scale of 1 to 10) at all four e	evaluation stages		

Date	Signature of course coordinator	Signature of seminar coordinator	
	Lecturer Ph.D. Lupea Mihaiela	Lecturer Ph.D. Lupea Mihaiela	
Date of approval	Sig	gnature of the head of department	
	Pr	of PhD Andreica Anca	