SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	Computer Science
Quannication	

2. Information regarding the discipline

2.1 Name of the discipline Te				st Design Techniqu	ies			
2.2 Course coordinator				Lecturer PhD Camelia Chisăliță-Crețu				
2.3 Seminar coo	ordi	nator		Lecturer PhD Camelia Chisăliță-Crețu				
2.4. Year of	3	2.5	6	2.6. Type of	C		2.7 Type of	Optional
study		Semester		evaluation			discipline	
2.8 Discipline		MLE5110			-			
Code		MILESTIU						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 c	course	2	3.3	1
					seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 c	ourse	24	3.6	12
					seminar/laboratory	
Time allotment:						
Learning using manual, course support, bibliography, course notes						20
Additional documentation (in libraries, on electronic platforms, field documentation)						19
Preparation for seminars/labs, homework, papers, portfolios and essays						20
Tutorship						20
Evaluations						10
Other activities:						-
3.7 Total individual study hours 89						

4. Prerequisites (if necessary)

3.8 Total hours per semester

3.9 Number of ECTS credits

4.1. curriculum	 OOP, Programming Fundamentals, Advanced Programming Methods
4.2. competencies	 Good programming skills in at least one of the programming languages Java, C#

125

5. Conditions (if necessary)

5.1. for the course	Course hall with projector
5.2. for the seminar /lab	 Laboratory: computers and use of a programming language
activities	environment

6. Specific competencies acquired

	· Specifi		inpetencies acquired
-	es =	•	C2.1 Identify adequate software systems development methodologies
2		•	C1.2 Identify and explain specific test design techniques that correspond to a testing level.
•	ssir	•	C1.3 Source code and goal oriented test elaboration in a well-known programming language.
9	oro	•	C4.3 Identify models and methods adequate to real life problem solving.
D	competencies		
		•	CT1 Apply rules to organized and efficient work, responsibilities of didactical and
-	E. E	•	scientific activities and creative capitalization of own potential, while respecting principles
	ransversar competencies		and rules for professional ethics.
	sve ete	•	CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and
			develop capabilities for capitalization of knowledge, accommodation to society requirements
ا			and communication in English.
	. •		una communication in English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	• Enhance the students understanding of testing and test design techniques.
discipline	• Provide the students with an environment in which they can explore the
	usage and usefulness of software testing and test design concepts in
	various business scenarios.
	• Induce a realistic and industry driven view of software testing concepts
	and their inherent benefits.
7.2 Specific objective of the	• Give students the ability to explore various test design techniques
discipline	applied to different levels of testing.
	 Improve the students' abilities to tackle on goal driven testing.
	• Enhance the students understanding of test design techniques value in
	business.
	• Students will be able to use various tools for the testing process (i.e., test
	management, test running, test reporting and bug reporting).
	• Students will be able to design test cases according to an established
	testing goal and using specific test design technique in order to
	investigate the software.

8. Content

8.1 Course	Teaching methods	Remarks
 Software Testing. Test Design Techniques 1.1. Software Testing Goals 1.2. Software Testing Scope 1.3. Test Design Technique. Definition and Attributes; 	 Interactive exposure Explanation Conversation Didactical demonstration 	
1.4. Taxonomy of Test Design Techniques;		
 2. Coverage-based Techniques (Part I) 2.1. Focus and Objectives; 2.2. Tours; 2.3. Feature integration Testing; 2.4. Logical Expressions; 	Interactive exposureExplanationConversationDidactical demonstration	

3. Coverage-based Techniques (Part II)	Interactive exposure
3.1. User Interface Testing;	 Explanation
3.2. Specification-based Testing;	Conversation
3.3. Requirements-based Testing;	Didactical demonstration
4. Tester-based Techniques (Part I)	Interactive exposure
4.1. Focus and Objectives;	• Explanation
4.2. User Testing;	Conversation
4.3. Alpha Testing;	Didactical demonstration
4.4. Beta Testing;	Didactical demonstration
5. Tester-based Techniques (Part II)	Interactive exposure
5.1. Bug Bashes;	Explanation
5.1. Bug Busiles, 5.2. Paired Testing;	Conversation
5.3. Localization Testing;	
<u> </u>	Didactical demonstration
6. Activity-based Techniques (Part I)	Interactive exposure
6.1. Focus and Objectives;	Explanation
6.2. Guerilla Testing;	Conversation
6.3. All-pairs Testing;	Didactical demonstration
6.4. Random Testing;	
7. Activity-based Techniques (Part II)	Interactive exposure
7.1. Use Cases;	Explanation
7.2. Scenario Testing;	Conversation
7.3. Dumb monkey Testing;	Didactical demonstration
8. Evaluation-based Techniques (Part I)	Interactive exposure
8.1. Focus and Objectives;	Explanation
8.2. Function Equivalence Testing;	Conversation
8.3. Mathematical Oracle;	Didactical demonstration
8.4. Constraint Checks;	Didactical definionstration
9. Evaluation-based Techniques (Part II)	Interactive exposure
9.1. Self-verifying data;	Explanation
9.2. Comparison with saved Results;	Conversation
9.3. Diagnostics-based Testing;	
	Didactical demonstration
10. Desired result-based Techniques	Interactive exposure
10.1. Focus and Objectives;	Explanation
10.2.Confirmation Testing;	Conversation
10.3.User Acceptance Testing;	Didactical demonstration
10.4.Certification Testing;	
Risk-based Techniques	
10.5.Focus and Objectives;	
10.6.Quicktests;	
10.7.History-based Testing;	
10.8.Usability Testing	
11. Test Design Techniques Analysis	Interactive exposure
	Explanation
	Conversation
12. Essay Presentations	Interactive exposure
•	Explanation
	• Conversation
Bibliography	Conversation

Bibliography

[Pres10] R. S. Pressman, Software engineering: a practinioner's approach, seventh edition, Higher Education, 2010.

[Crs09] L. Crispin, J. Grecory, Agile testing: a practical guide for testers and agile teams, Addison-Wesley, 2009.

[You08] M. Pezzand, M. Young, Software Testing and Analysis: Process, Principles and Techniques, John Wiley & Sons, 2008.

[Nai08] K. Naik, P. Tripathy, Software testing and quality assurance. Theory and Practice, A John Wiley & Sons, Inc., 2008.

[Kat08] J. P. Katoen, Principles of Model Checking, MIT Press, May 2008.

[Pat05] R. Patton, Software Testing, Sams Publishing, 2005.

[Mye04] Glenford J. Myers, The Art of Software Testing, John Wiley & Sons, Inc., 2004.

[Brn02] I. Burnstein, Practical Software Testing, Springer, 2002.

[Kaner99] C. Kaner, J. Falk, H.Q. Nguyen, Testing Computer Software, Wiley, 1999.

[Perry97] W.E.Perry, R.W. Rice, Surviving the Top Ten Challenges of Software Testing – A People Oriented Approach, Dorset House Publishing, 1997.

[Kaner02] C. Kaner, J. Bach, B. Pettichord, Lesson Learned in Software Testing, Wiley, 2002.

[Page08] A. Page, K. Johnston, B. Rollison, Microsoft, How We Test Software at Microsoft, 2008.

[Whitt2012] J. Whittaker, J. Arbon J. Carollo, How Google Tests Software, Google, Pearson Education, 2012.

	2 Seminar / laboratory	Teaching methods	Remarks
	Laboratory 1 Testing tools and platforms.	Presentation, Conversation, Problematizations, Discovery, Other	
	Testing Project Setup.	methods – individual study, exercises	
2.	Laboratory 2 Coverage-based Test Design Techniques	Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises	
3.	Laboratory 3 Tester-based Test Design Techniques	Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises	
4.	Laboratory 4 Activity-based Test Design Techniques	Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises	
5.	Laboratory 5 Evaluation-based Test Design Techniques	Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises	
6.	Laboratory 6 Project turn-in	Evaluation	
	ferences: e references from Lectures.		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Students will know how to apply test design techniques for a software product, in a similar way they are used in industry.
- Students will be able to understand the differences between the goals and scope of the various test techniques applied to a software system.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	At the end of the semester students will turn in an essay on Test Design Techniques. The corresponding grade is denoted by R .	Oral Examination	50%
10.5 Seminar/laboratory activities	Each lab activity will be graded. The arithmetic average of the grades is denoted by L .	Laboratory Activity	50%

Remark:

- Laboratory assignments cannot be redone in the retake session.
- Oral examination may be taken during the retake session.
- No more than one absence is allowed for the laboratory activities.

10.6 Minimum performance standards

- Students will be able to apply test design techniques according to established goals for a software system.
- Students will be able to unstandard the differences between software testing goal, scope, and test design technique concepts.
- The final grade (M) is computed as follows: M = 50%R + 50%L.
- At least $M \ge 5.00$ is favourable to pass this course exam.

Date Signature of course coordinator

Signature of seminar coordinator

29.04.2017

Lect. PhD. Camelia Chisăliță-Crețu,

Lect. PhD. Camelia Chisăliță-Crețu,

Date of approval

Signature of the head of department

Prof. PhD. Anca Andreica