SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Spatial Databases								
2.2 Course coordinator Lectur				Lecturer PhD. TRÎMBI	ŢAŞ l	Maria-Gabriela		
2.3 Seminar coordinator				Lecturer PhD. TRÎMBI	ŢAŞ l	Maria-Gabriela		
2.4. Year of	3	2.5	5	5 2.6. Type of C 2.7 Type of Optional				
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1/1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					
Other activities:					0

3.7 Total individual study hours	58
3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	• Databases
	 Data Structures and Algorithms
4.2. competencies	Ability to create databases

5. Conditions (if necessary)

5.1. for the course	Lecture room with video projector
5.2. for the seminar /lab	 Laboratory with computers with MS SQL Server (minimum 2008)
activities	installed

6. Specific competencies acquired

		C3.1 Description of concepts, theories and models used in the application domain
Professional	competencies	C3.3 Use of mathematical and computer science models and tools for solving problems in the application domain
rofes		C3.4 Data and models analysis
I	5	C3.5 Development of computer components for interdisciplinary projects
Transversal	competencies	CT1 Apply rules to: organized and efficient work, responsibilities of didactical and scientific activities and creative capitalization of own potential, while respecting principles and rules for professional ethics CT3 Use of effective methods and techniques of learning, information, research and development of the capacity to exploit knowledge, to adapt to the requirements of a dynamic society and communication in Romanian language and in a foreign language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To initiate the students into spatial database problems and concepts To induce practical skills for working with spatial databases and data structures
7.2 Specific objective of the discipline	 To understand the concept of spatial databases Learn about the components of SDBMS To understand the concept of a query language; improve the skills in using a standard query language (SQL) Learn to use spatial ADTs with SQL Learn to use OGIS spatial ADTs with SQL

8. Content

8.1 Course	Teaching methods	Remarks
1. What is a Spatial Database System (SDBMS)?	Interactive exposure	
Terms, Definitions	Explanation	
Modeling Spatial Data in Traditional DBMS	Conversation	
	Didactical	
	demonstration	
2. Spatial Data Types and Traditional Databases	Interactive exposure	
Spatial Data Types and Post-relational Databases	Explanation	
How is a SDBMS different from a GIS ?	Conversation	
Components of a SDBMS	Didactical	
	demonstration	
3. Three Layer Architecture	Interactive exposure	
Spatial Taxonomy	Explanation	
Data Models	Conversation	
	Didactical	
	demonstration	

4. Spatial Concepts and Data Models What is a Data Model?	Interactive exposureExplanation
Types of Data Models	• Conversation
Models of Spatial Information	Didactical
1	demonstration
5. Field based Model	
	Interactive exposure
Types of Field Operations Object Model	Explanation
Object Wiodel	Conversation
	Didactical
	demonstration
6. Classifying Spatial objects	Interactive exposure
Spatial Object Types in OGIS Data Model	Explanation
Classifying Operations on spatial objects in	Conversation
Object Model	Didactical
Topological Relationships	demonstration
7. Three-Step Database Design	Interactive exposure
Extending ER with Spatial Concepts	• Explanation
Conceptual Data Modeling with UML	• Conversation
Comparing UML Class Diagrams to ER	Didactical
Diagrams	demonstration
	demonstration
8. Spatial Query Languages	Interactive exposure
Standard Database Query Languages	• Explanation
Relational Algebra	• Conversation
Basic SQL Primer	Didactical
	demonstration
9. Query Processing,	Interactive exposure
Query Optimization	• Explanation
	• Conversation
	Didactical
	demonstration
10. Extending SQL for Spatial Data	Interactive exposure
Example Queries that emphasize spatial aspects	• Explanation
Trends: Object-Relational SQL	• Conversation
Trends. Object Relational BQE	
	Didactical demonstration
11 Snotial Stayage and Indexing	
11. Spatial Storage and Indexing	• Interactive exposure
Storage: Disk and Files	• Explanation
Organizing spatial data with space filling curves Grid Files	• Conversation
R-tree family	Didactical
<u> </u>	demonstration
12. Spatial Indexing:	• Interactive exposure
Search Data-Structures	Explanation
	Conversation
	Didactical
	demonstration
13. Trends in Spatial Databases	Interactive exposure
	Conversation
44.0.1.1	
14. Graded paper in Spatial Databases	Written test

Bibliography

- 1. SHASHI SHEKHAR, SANJAY CHAWLA, Spatial Databases: A Tour, Prentice Hall, 2003 (ISBN 013-017480-7)
- 2.MANFRED M. FISCHER, PETER NIJKAMP Geographic Information Systems, Spatial Modeling and Policy Evaluation, Springer-Verlag GmbH (1993)
- 3. EMMANUEL STEFANAKIS Geographic Databases and GIS 2008, Hardcover., ISBN: 978-3-540-22491-4
- 4. GABRIEL M KUPER, LEONID LIBKIN, JAN PAREDAENS (Editors) Constraint Databases. Springer 2000, ISBN 3-540-66151-4
- 5. Applications of Spatial Data Structures: Computer Graphics, Image Processing and GIS (Addison-Wesley series in computer science) (Hardcover), 1989
- 6. https://www.kth.se/social/upload/5177f0ecf2765405c1346b84/AG2425_Spatial_Databases.pdf, Rui Zhu and Gyözö Gidófalvi, Last Updated: March 18, 2013

8.2 Seminar /	laboratory	Teaching methods	Remarks
I.	Getting Started With Microsoft SQL Server 2008 Spatial	Explanation, dialogue, case studies	The laboratory is structured as 2 hours classes every second week
II.	Spatial Data types in Microsoft SQL Server 2008: Geometry and Geography	Explanation, dialogue, case studies	
III.	Design of a Spatial DB	Explanation, dialogue, case studies	
IV.	Implementation of SDB	Explanation, dialogue, case studies	
V.	Querying a SDB I	Explanation, dialogue, case studies	
VI.	Querying a SDB II	Explanation, dialogue, case studies	
VII.	Presentation of the personal project		

Bibliography

SERGE ABITEBOUL , RICHARD HULL , VICTOR VIANU **Foundations of Databases** *Addison-Wesley*, 1995

MARK DE BERG, OTFRIED CHEONG, MARC VAN KREVELD, MARK OVERMARS, Computational Geometry: Algorithms and Applications Springer, Berlin, 2008.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of major universities in Europe and abroad;
- The content of the course is concordant with partial competencies for possible occupations from the Grid 1 RNCIS

10. Evaluation

Type of activity	Evaluation criteria	Evaluation methods	Share in the grade (%)
Course	 know the basic principle of the domain; apply the course concepts problem solving 	Written test	50%
	 be able to design and implement a spatial database apply techniques for different classes of real world problems 	Continuous observations Practical project	50%

Minimum performance standards

• The final grade (average between written exam and laboratory work) should be at least grade 5 (from a scale of 1 to 10)

Date Signature of course coordinator Signature of seminar coordinator

27.05.2016 Lect. PhD. Maria-Gabriela Trîmbiţaş Lect. PhD. Maria-Gabriela Trîmbiţaş

Date of approval Signature of the head of department

Prof. Dr. Anca Andreica