LEHRVERANSTALTUNGSBESCHREIBUNG

1. Angaben zum Programm

1.1 Hochschuleinrichtung	Babes-Bolyai Universität, Cluj-Napoca
1.2 Fakultät	Mathematik und Informatik
1.3 Department	Mathematik
1.4 Fachgebiet	Informatik
1.5 Studienform	Bachelor
1.6 Studiengang /	Informatik
Qualifikation	

2. Angaben zum Studienfach

2.1 LV-Bezeichnu	ng	ALGOR	ALGORITHMISCHE GEOMETRIE				
2.2 Lehrverantwortlicher – Vorlesung Nechita Veronica							
2.3 Lehrverantwortlicher – Seminar				Nechita Veronica			
2.4 Studienjahr	2	2.5 Semester	4	2.6. Prüfungsform P 2.7 Art der LV Wahlpflicht			Wahlpflicht

3. Geschätzter Workload in Stunden

3.1 SWS	4	von denen: 3.2 Vorlesung	2	3.3 Labor/Übung	1/1	
3.4 Gesamte Stundenanzahl im	48	von denen: 3.5 Vorlesung	24	3.6 Labor/Übung	12/1	
Lehrplan					2	
Verteilung der Studienzeit:						
Studium nach Handbücher, Kurs	buch,	Bibliographie und Mitschrifte	en		20	
Zusätzliche Vorbereitung in der Bibliothek, auf elektronischen Fachplattformen und durch						
Feldforschung						
Vorbereitung von Seminaren/Übungen, Präsentationen, Referate, Portfolios und Essays						
Tutorien						
Prüfungen						
Andere Tätigkeiten:						

3.7 Gesamtstundenanzahl Selbststudium	77
3.8 Gesamtstundenanzahl / Semester	125
3.9 ECTS-Punkte	5

4. Voraussetzungen (falls zutreffend)

4.1 curricular	•
4.2 kompetenzbezogen	elementare Kenntnisse im Bereich von Algorithmen und
	Datenstrukturen, Analysis und lineare Algebra

5. Bedingungen (falls zutreffend)

5.1 zur Durchführung der	Vorlesungsraum
Vorlesung	
5.2 zur Durchführung des	• Laborraum
Seminars / der Übung	

6. Spezifische erworbene Kompetenzen

Berufliche Kompetenzen	Das Wissen, reale Probleme als geometrische Fragenstellungen zu modellieren und eine Untersuchung des jeweiligen Gebietes motivieren.
Transversale Kompetenzen	Darstellung des Zusammenhangs zwischen Geometrie und ihre Anwendungsbereiche, wie zum Beispiel Robotik, Computergrafik, die Arbeit mit gespeicherten geographischen Daten.

7. Ziele (entsprechend der erworbenen Kompetenzen)

7.1 Allgemeine Ziele der Lehrveranstaltung	 die geometrischen Hintergründe zu studieren, um die Entwickelung von effizienten und praktikablen Algorithmen zur Lösung geometrischer Probleme zu ermöglichen; die mathematischen Methoden zu liefern, welche zur Bestimmung der algorithmischen Komplexität geometrischer Probleme führen.
7.2 Spezifische Ziele der Lehrveranstaltung	 Formalisierung und Automatisierung rationalen Denkens Rolle der Geometrie in der Informatik

8. Inhalt

8.1 Vorlesung	Lehr- und Lernmethode	Anmerkungen
1. Konvexe Hülle einer endlichen Punktmenge	Darstellung der Thematik, Vortrag	
in der Ebene	Diskussion	
2. Die Berechnung der konvexen Hülle einer	Vortrag, Beweis, Diskussion	
endlichen Punktmenge in der Ebene		
3. Schnittpunkt von Strecken. Die doppelt	Vortrag, Beweis, Diskussion	
verkettete Kantenliste.		
4. Berechnung der Überlagerung zweier	Vortrag, Beweis, Diskussion	
Ebenenaufteilungen.		
5. Das Problem der Museumwächter.	Vortrag, Beweis, Diskussion	
Triangulation.		

6. Zerlegung der Polygone in monotone Teilpolygone. Triangulierung monotoner Polygone	Vortrag, Beweis, Diskussion	
7. Der Durchschnitt von Halbebenen	Vortrag, Beweis, Diskussion	
8. Punktlokalisierung und Trapezkarten	Vortrag, Beweis, Diskussion	
9.Randomisierter, inkrementeller Algorithmus zur Punktlokalisation.	Vortrag, Beweis, Diskussion	
10. Das Problem des nächsten Postamts. Voronoi-Diagramme	Vortrag, Beweis, Diskussion	
11. Voronoi-Diagramme von Liniensegmenten. Das Voronoi-Diagramm des entferntesten Nachbarn.	Vortrag, Diskussion	
12. Nachbarschaftliche Beziehungen. Die Delauney-Triangulation	Vortrag, Diskussion	

Literatur

- 1. Rolf Klein, Algorithmische Geometrie: Grundlagen, Methoden, Anwendungen, Springer, 2000
- 2. DE BERG, M. VAN KREFELD, M. OVERMARS, M. SCHWARZKOPF, O.: Computational Geometry. Algorithms and Applications, (3rd edition), Springer, 2008
 - 3. CHEN, J. Computational geometry. Methods and applications, Texas AM, 1996
 - 4. MOUNT, D., Lectures in Computational Geometry, 1997
 - 5. O'ROURKE, J.: Art Gallery Theorems and Algorithms, Oxford University Press, 1987
 - 6. O'ROURKE, J.: Computational Geometry in C, Cambridge University Press, 1994
 - 7. Franco P. Preparata, Michael Ian Shamos. Computational Geometry: An Introduction. Springer, New York, 2nd edition, 1985.

8.2 Seminar / Übung	Lehr- und Lernmethode	Anmerkungen
S1-Labor 1. Aufgaben – Implemmentierung von	Beispiele, Diskussionen,	
Graham Algorithmus	Gruppenarbeit	
S2-Labor 2. Aufgaben – Suchen und Schnitte	Beispiele, Diskussionen,	
	Gruppenarbeit	
S3-Labor 3. Aufgaben – Implemmentierung von	Beispiele, Diskussionen,	
Triangulationen	Gruppenarbeit	
S4-Labor 4. Aufgaben –Die Berechnung der	Beispiele, Diskussionen,	
Triangulation eines Polygons in fast-linearer Zeit	Gruppenarbeit	
S5-Labor 5. Aufgaben – Implemmentierung des	Beispiele, Diskussionen,	
inkrementellen Algorithmus (1)	Gruppenarbeit	
S6-Labor 6. Aufgaben – Implemmentierung des	Beispiele, Diskussionen,	
inkrementellen Algorithmus (2)	Gruppenarbeit	

Literatur

- 1. Rolf Klein, Algorithmische Geometrie: Grundlagen, Methoden, Anwendungen, Springer, 2000
- 2. DE BERG, M. VAN KREFELD, M. OVERMARS, M. SCHWARZKOPF, O.: Computational Geometry. Algorithms and Applications, (3rd edition), Springer, 2008
 - 3. CHEN, J. Computational geometry. Methods and applications, Texas AM, 1996
 - 4. MOUNT, D., Lectures in Computational Geometry, 1997

- 5. O'ROURKE, J.: Art Gallery Theorems and Algorithms, Oxford University Press, 1987
- 6. O'ROURKE, J.: Computational Geometry in C, Cambridge University Press, 1994
- 7. Franco P. Preparata, Michael Ian Shamos. Computational Geometry: An Introduction. Springer, New York, 2nd edition, 1985.

9. Verbindung der Inhalte mit den Erwartungen der Wissensgemeinschaft, der Berufsverbände und der für den Fachbereich repräsentativen Arbeitgeber

Diese Vorlesung wird an international bekannten Universitäten im Fachgebiet Informatik angeboten.

Die erworbenen Kenntnisse finden Anwendungen im Gebiet der Robotik, der Computergrafik und der Bearbeitung von gespeicherten geographischen Daten.

10. Prüfungsform

10. I Turungstorm		ı	
Veranstaltungsart	10.1 Evaluationskriterien	10.2	10.3 Anteil an der
		Evaluationsmethoden	Gesamtnote
10.4 Vorlesung	Verstehen und korrekter	Zwei schriftliche	60%
	Umgang mit den Instrumenten	Zwischenkontrollarbeiten	
	der algorithmischen Geometrie	und eine schriftliche	
		Abschlussarbeit.	
10.5 Labor / Übung	Anwesenheit, aktive Mitarbeit,	Diskussionen.	40%
10.3 Labor / Coung		Diskussionen.	4070
	richtiges Lösen der		
	Laborarbeiten.		

10.6 Minimale Leistungsstandards

Grundkenntnisse der algorithmischen Geometrie.

Für das Bestehen der Prüfung muss die Mindestnote 5 erzielt werden.

Ausgefüllt am: Vorlesungsverantwortlicher Seminarverantwortlicher

12.12.2013 Dr.Nechita Veronica Dr. Nechita Veronica

Genehmigt im Department am: Departmentdirektor

20.12.2013 Prof. Dr. Agratini Octavian