SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the	dis	scipline	Da	tabase Manageme	nt Sy	stem	
2.2 Course coordinator Lect. PhD Dan Mircea Suciu					Suciu		
2.3 Seminar coordinator				Assist. PhD Sabina Surdu			
2.4. Year of	2	2.5	1	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1/1
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					25
Tutorship					5
Evaluations					20
Other activities:					-
3.7 Total individual study hours 08					

3.7 Total individual study hours	98
3.8 Total hours per semester	154
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Data Structures and Algorithms
	Databases Basics
4.2. competencies	Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	Video projector
5.2. for the seminar /lab	Laboratory with computers with MS SQL Server (minimum 2008)
activities	

6. Specific competencies acquired

Professional	competencies	C 5.3 Usage of methods and methodologies for database design of specific projects C 5.4 Evaluation quality of different database management systems from structural, functional and extensibility points of view. C 5.5 Development of particular databases projects.
Transversal	competencies	CT1 - Apply rules to: organized and efficient work, responsibilities of didactical and scientific activities and creative capitalization of own potential, while respecting principles and rules for professional ethics CT3 - Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accommodation to society requirements and communication in English

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To get acquainted with the general concepts regarding the databases. To get acquainted with the data models, especially the relational model.
7.2 Specific objective of the discipline	To get acquainted with the problems regarding the database security, stored procedures, client-server technology, concurrent access to the databases, database recovery, distributed databases.

8. Content

8.1 Course	Teaching methods	Remarks
1. Transactions. Concurrency control. Execution	Interactive exposure	
plan	Explanation	
	 Conversation 	
	Didactical	
	demonstration	
2. Interference anomalies. Serializability	 Interactive exposure 	
	 Explanation 	
	 Conversation 	
	Didactical	
	demonstration	
3. Concurrency control locking policies: 2PL	 Interactive exposure 	
conservative, 2PL strict.	 Explanation 	
	 Conversation 	
	Didactical	
	demonstration	
4. Deadlock Management.	 Interactive exposure 	
	 Explanation 	
	 Conversation 	
	Didactical	
	demonstration	
5. Concurrency control with timestamps. OCC.	 Interactive exposure 	
	 Explanation 	
	 Conversation 	
	Didactical	

6 Multi vargionina	demonstration
e e e e e e e e e e e e e e e e e e e	• Interactive exposure
	• Explanation
	• Conversation
	• Didactical
	demonstration
7. Data recovery.	Interactive exposure
	• Explanation
	• Conversation
	Didactical
	demonstration
8. Parallel Databases	Interactive exposure
	• Explanation
	 Conversation
	Didactical
	demonstration
9. Distributed Databases.	Interactive exposure
	• Explanation
	• Conversation
	Didactical
	demonstration
10. Transaction Management in Distributed	Interactive exposure
Datahasas	• Explanation
	• Conversation
	Didactical
	demonstration
11. Locking Management in Distributed	Interactive exposure
Detabases	• Explanation
	• Conversation
	Didactical
	demonstration
12. Data Recovery in Distributed Databases.	
	• Interactive exposure
	• Explanation
	• Conversation
	Didactical demonstration
12 Datahasa Cammitu	demonstration
13. Database Security.	• Interactive exposure
14.5	• Conversation
14. Data Warehouses	Interactive exposure
Diblio cono mbro	Conversation

Bibliography

- 1. AHO, A., HOPCROFT, J., ULLMAN, J., Data Structures and Algorithms. Addison-Wesley, Reading, Massachusetts, 1983.
- 2. BÂSCA, O., Baze de date. Editura All, Bucuresti 1997.
- 3. DATE, C.J., An Introduction to Data Base Systems. Addison Wesley, Reading, MA, 2004.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. ADO.NET library	Dialogue, debate, case	The seminar is
	studies, examples, proofs	structured as 2 hours
		classes every second
		week
2. Transactions in MS SQL Server	Dialogue, debate, case	
	studies, examples, proofs	

3. Concurrency control in MS SQL Server	Dialogue, debate, case
	studies, examples, proofs
4. Security in MS SQL Server	Dialogue, debate, case
	studies, examples, proofs
5. Query optimization in MS SQL Server	Dialogue, debate, case
	studies, examples, proofs
6. Database administration	Dialogue, debate, case
	studies, examples, proofs
7. Distributed databases specific statements	Dialogue, debate, case
•	studies, examples, proofs

Bibliography

- 1. AHO, A., HOPCROFT, J., ULLMAN, J., Data Structures and Algorithms. Addison-Wesley, Reading, Massachusetts, 1983.
- 2. BÂSCA, O., Baze de date. Editura All, Bucuresti 1997.
- 3. DATE, C.J., An Introduction to Data Base Systems. Addison Wesley, Reading, MA, 2004.

8.3 Laboratory	Teaching methods	Remarks
1. + 2. Design and develop a .NET application which	Explanation,	
maintains the content of a table	dialogue, case studies	
3. +4. +5. High level operations developed in C# for	Explanation,	
maintaining an n-to-m relationship between two	dialogue, case studies	
tables.		
6.+7. Transactions management and solving deadlocks	Explanation,	
	dialogue, case studies	

Bibliography

- 1. KORTH, H.F., SILBERSCHATZ, A., Data Base System Concepts. McGraw-Hill Book Compagny, 1986.
- 2. LIVIU NEGRESCU, LAVINIA NEGRESCU, Limbajul C# pentru incepatori. Editura Albastra, Cluj-Napoca 2011.
- 3. RAMAKRISHNAN, R., Database Management Systems. McGraw-Hill, 1998.
- 4. T. THEMSTROM, A. WEBBER, M. HOTEK, MS SQL Server 2008 Database Development, Self Paced Training Kit 2009

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course structure is according with the IEEE and ACM Recommendations for Computer Science studies;
- The course is part of the studying program of all major universities in Romania and abroad;
- The content of the course is considered by the software companies as mandatory knowledge for a senior level software developer

10. Evaluation

Type of activity	Evaluation criteria	Evaluation methods	Share in the grade (%)
Course	know the basic principle of the domain;apply the course conceptsproblem solving	Written exam	50%
Seminar/lab activities	 be able to create an SQL script for tables maintenance be able to detect optimization problems in 	 Practical examination Continuous observations	50%

	SQL queries				
	•				
	•				
Minimum performance standards					
• The final grade (average between written exam and laboratory work) should be at least grade 5 (from a scale of 1 to 10)					

Date	Signature of course coordinator	Signature of seminar coordinator
	Lect. PhD. Dan Mircea Suciu	Lect. PhD. Dan Mircea Suciu
Date of approval	Signature of the head of department	