SYLLABUS

${\bf 1.}\ Information\ regarding\ the\ programme$

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Databases								
2.2 Course coordinator Lect. PhD Dan Mircea Suciu								
2.3 Seminar coordinator				Lect. PhD Sabina Surdu				
2.4. Year of	2	2.5	3	2.6. Type of E 2.7 Type of Compulsory				
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	1/2
				seminar/laboratory	
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	14/28
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					11
Evaluations					8
Other activities:					-
2.7 Total individual study hours 80					

3.7 Total individual study hours	80
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Data Structures and Algorithms
4.2. competencies	Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	Video projector
5.2. for the seminar /lab	Laboratory with computers with MS SQL Server (minimum 2005) &
activities	Visual Studio installed.

6. Specific competencies acquired

Professional	competencies	C 5.1 Identification of basic concepts for database organization C 5.2 Identification and explanation of basic models for data management in databases C 5.3 Usage of methods and methodologies for database design of specific projects
Transversal	competencies	CT1 - Apply rules to: organized and efficient work, responsibilities of didactical and scientific activities and creative capitalization of own potential, while respecting principles and rules for professional ethics CT3 - Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accommodation to society requirements and communication in English

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To get acquainted with the general concepts regarding the data bases. To get acquainted with the data models, especially the relational model.
7.2 Specific objective of the discipline	 To be able to create and modify databases in MS SQLServer Ability to manage databases in .Net

8. Content

8.1 Course	Teaching methods	Remarks
Introduction in Databases	 Interactive exposure Explanation Conversation Didactical demonstration 	
2. Relational Databases	 Interactive exposure Explanation Conversation Didactical demonstration 	
3. SQL Queries	 Interactive exposure Explanation Conversation Didactical demonstration 	
4-5. Functional Dependencies, Normal Forms	 Interactive exposure Explanation Conversation Didactical demonstration 	
6. Relational Algebra	Interactive	

	exposure
	• Explanation
	Conversation
	Didactical
	demonstration
	Interactive
	exposure
7 Physical structure of DDs	Explanation
7. Physical structure of DBs	• Conversation
	Didactical
	demonstration
	Interactive
	exposure
0. 71. 1. 1	• Explanation
8. Physical structure of DBs	• Conversation
	Didactical
	demonstration
	Interactive
	exposure
	• Explanation
8. – 10. Indexes. Trees. Hash-files	• Conversation
	Didactical
	demonstration
	Interactive
11. Conceptual Modelling	exposure
11. Conceptual Wodening	• Conversation
	Interactive
1213. Object-Oriented Databases &	
Object-Relational Databases	exposure
	• Conversation
14 D 11	Interactive
14. Problems	exposure
	• Conversation

Bibliography

- 1. AHO, A., HOPCROFT, J., ULLMAN, J., Data Structures and Algorithms. Addison-Wesley, Reading, Massachusetts, 1983.
- 2. BÂSCA, O., Baze de date. Editura All, Bucuresti 1997.
- 3. DATE, C.J., An Introduction to Data Base Systems. Addison Wesley, Reading, MA, 2004.

8.2 Seminar	Teaching methods	Remarks
Data Definition specific statements in SQL	Dialogue, debate, case	The seminar is
	studies, examples, proofs	structured as 2 hours
		classes every second
		week
2. CRUD statements in SQL	Dialogue, debate, case	
	studies, examples, proofs	
3. Stored procedures, Dynamic SQL, Cursors	Dialogue, debate, case	
	studies, examples, proofs	
4. Functions, Views, Triggers	Dialogue, debate, case	
	studies, examples, proofs	
5 6. Indexes	Dialogue, debate, case	
	studies, examples, proofs	
7. Problems	Dialogue, debate, case	
	studies, examples, proofs	

Bibliography

- 1. KORTH, H.F., SILBERSCHATZ, A., Data Base System Concepts. McGraw-Hill Book Compagny, 1986.
- 2. LIVIU NEGRESCU, LAVINIA NEGRESCU, Limbajul C# pentru incepatori. Editura Albastra, Cluj-Napoca 2011.
- 3. RAMAKRISHNAN, R., Database Management Systems. McGraw-Hill, 1998.

8.3 Laboratory	Teaching methods	Remarks
1. + 2. Create a database in MS SQL Server with at	Explanation,	
least 10 tables, and fill 5 of its tables with at least 10	dialogue, case studies	
relevant records		
3. +4. + 5. Create SQL scripts for versioning and to	Explanation,	
change database structure	dialogue, case studies	
6.+7.+8. Develop 10 complex SQL queries according	Explanation,	
with some specific criteria.	dialogue, case studies	
9.+10.+11. Develop testing scripts to analyse the	Explanation,	
efficiency of a database	dialogue, case studies	
12. +13.+14. SQL queries optimization	Testing data	
	discussion, evaluation	

Bibliography

- 1. KORTH, H.F., SILBERSCHATZ, A., Data Base System Concepts. McGraw-Hill Book Compagny, 1986.
- 2. LIVIU NEGRESCU, LAVINIA NEGRESCU, Limbajul C# pentru incepatori. Editura Albastra, Cluj-Napoca 2011.
- 3. RAMAKRISHNAN, R., Database Management Systems. McGraw-Hill, 1998.
- 4. T. THEMSTROM, A. WEBBER, M. HOTEK, MS SQL Server 2008 Database Development, Self Paced Training Kit 2009

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course structure is according with the IEEE and ACM Recommendations for Computer Science studies;
- The course is part of the studying program of all major universities in Romania and abroad;
- The content of the course is considered by the software companies as mandatory knowledge for a software developer

10. Evaluation

Type of activity	Evaluation criteria	Evaluation methods	Share in the grade (%)	
Course	know the basic principle of the domain;apply the course conceptsproblem solving	Written exam	50%	
Seminar/lab activities	 be able to create and maintenance a database apply the course concepts to develop simple to complex SQL queries 	 Practical examination Continuous observations	50%	
Minimum performance standards				

Minimum performance standards

• The final grade (average between written exam and laboratory work) should be at least grade 5 (from a scale of 1 to 10)

- To attend the exam, a student must have:
 - o At least 12 laboratory attendances
 - At least 5 seminar attendances (http://www.cs.ubbcluj.ro/wp-content/uploads/Hotarare-CDI-15.03.2017.pdf)

Date	Signature of course coordinator	Signature of seminar coordinator
	Lect. PhD. Dan Mircea Suciu	Lect. PhD. Dan Mircea Suciu
Date of approval	Signature of the head of department	