SYLLABUS

1.1 Higher education institutionBabeş Bolyai University1.2 FacultyFaculty of Mathematics and Computer Science1.3 DepartmentDepartment of Mathematics1.4 Field of studyComputer Science1.5 Study cycleMaster1.6 Study programme / QualificationHigh Performance Computing and Big Data Analytics

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline			Optimization models				
2.2 Course coordinator			Prof. Nicolae Popovici, Ph.D., habil.				
2.3 Seminar coordinator			Prof. Nicolae Popovici, Ph.D., habil.				
2.4. Year of study	2	2.5 Semester		2.6. Type of evaluation	Exam	2.7 Type of discipline	Optional

3. Total estimated time (hours/semester of didactic activities)

2.1.11 1	2	06 1:1 22	2	2.2 .	1
3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar	1
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6 seminar	14
Time allotment:					
Learning using manual, course suppo	rt, bił	oliography, course notes	8		56
Additional documentation (in libraries, on electronic platforms, field documentation)					28
Preparation for seminars/labs, homework, papers, portfolios and essays					36
Tutorship					14
Evaluations					24
Other activities:					-
3.7 Total individual study hours		158			•
3.8 Total hours per semester		200			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	• Linear algebra;	
	Mathematical analysis.	
4.2. competencies	Basic notions of linear algebra and differential calculus in the n-	
	dimensional Euclidean space.	

8

5. Conditions (if necessary)

5.1. for the course	Lecture room equipped with a beamer
5.2. for the seminar /lab	Internet connection
activities	

6. Specific competencies acquired

Professional competencies	 To understand, in-depth, some concepts and results of optimization theory. Ability to use mathematical methods and implementable algorithms for solving practical optimization problems.
Transversal competencies	To apply rigorous and efficient work rules, by adopting a responsible attitude towards the scientific and didactic activities. To develop the own creative potential in specific areas, following the professional ethical norms and principles.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	The aim of this course is to present several classes of practical optimization models along with numerical solution algorithms.	
7.2 Specific objective of the	Students should acquire knowledge about:	
discipline	 Scalar optimization; Vector (multicriteria) optimization; 	
	Dynamic optimization.	

8. Content

8.1 Course	Teaching methods	Remarks
1. Linear optimization models; Duality theorems	Direct instruction,	
	mathematical proof,	
	exemplification	
2. The Simplex algorithm in primal form	Direct instruction,	
	mathematical proof,	
	exemplification	
3. The Simplex algorithm in dual form	Direct instruction,	
	mathematical proof,	
	exemplification	
4. Extended linear optimization problems	Direct instruction,	
	mathematical proof,	
	exemplification	
5. Integer optimization problems	Direct instruction,	
	mathematical proof,	
	exemplification	
6. Matrix games	Direct instruction,	
	mathematical proof,	
	exemplification	
7. Matrix games via linear optimization problems	Direct instruction,	
	mathematical proof,	
	exemplification	
8. Convex optimization models	Direct instruction,	
	mathematical proof,	
	exemplification	
9. The cutting-hyperplanes method	Direct instruction,	
	mathematical proof,	
	exemplification	
10. The best approximation problem	Direct instruction,	
	mathematical proof,	
	exemplification	

11. Multicriteria optimization models	Direct instruction,
	mathematical proof,
	exemplification
12. Multicriteria location problems	Direct instruction,
	mathematical proof,
	exemplification
13. Dynamic optimization models	Direct instruction,
	mathematical proof,
	exemplification
14. Network traffic flow optimization models	Direct instruction,
	mathematical proof,
	exemplification

Bibliography

- 1. BOYD, S., VANDENBERGHE, L.: Convex Optimization, Cambridge University Press, 2004.
- 2. BRECKNER, W.W.: Cercetare operațională, Universitatea "Babeș-Bolyai", Facultatea de Matematică, Cluj-Napoca, 1981.
- 3. EHRGOT, M.: Multicriteria Optimization. Springer, Berlin Heidelberg New York, 2005.
- 4. LOWNDES, V., BERRY, S., PARKES, C., BAGDASAR, O., POPOVICI, N.: Further Use of Heuristic Methods, Chapter 7 in: Berry, S., Lowndes, V., Trovati, M. (Eds.), Guide to Computational Modelling for Decision Processes: Theory, Algorithms, Techniques and Applications, Springer, 2017.
- 5. POPOVICI, N.: Optimizare vectorială, Casa Carții de Știință, Cluj-Napoca, 2005.
- 6. VANDERBEI, R.: Linear Programming. Foundations and Extensions, Springer, Boston, 2008.

8.2 Seminar	Teaching methods	Remarks
1. Linear optimization problems solved by means	Problem-based	2 hours
of the Simplex algorithm in primal form.	instruction, debate,	
	mathematical proofs	
2. Linear optimization problems solved by means	Problem-based	2 hours
of the Simplex algorithm in dual form.	instruction, debate,	
	mathematical proofs	
3. Integer optimization problems solved by the	Problem-based	2 hours
Gomory's method.	instruction, debate,	
	mathematical proofs	
4. Matrix games solved via linear optimization.	Problem-based	2 hours
	instruction, debate,	
	mathematical proofs	
5. Convex optimization problems solved by the	Problem-based	2 hours
cutting-hyperplanes method	instruction, debate,	
	mathematical proofs	
6. Multicriteria linear optimization problems	Problem-based	2 hours
solved by scalarization methods	instruction, debate,	
	mathematical proofs	
7. Network-type dynamic optimization problems	Problem-based	2 hours
	instruction, debate,	
	mathematical proofs	

Bibliography

- 1. BRECKNER, B.E., POPOVICI, N.: Probleme de cercetare operațională, EFES, Cluj-Napoca, 2006.
- 2. BRECKNER, W.W., DUCA, D.: Culegere de probleme de cercetare operationala, Universitatea Babes-Bolyai, Facultatea de Matematica, Cluj-Napoca, 1983.
- 3. MORDUKHOVICH, B.S., NAM, N.M., An easy path to convex analysis and applications, Morgan & Claypool Publishers, Milton Keynes, 2014.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course ensures a solid theoretical background, according to national and international standards

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the $\frac{10.3 \text{ Share in the}}{10.3 \text{ Share in the}}$	
			grade (%)	
10.4 Course	- Knowledge of theoretical	Written exam	70%	
	concepts and capacity to			
	rigorously prove the main			
	theorems;			
	- Ability to solve practical			
	exercises and theoretical			
	problems			
10.5 Seminar/lab activities	- Attendance and active	Continuous evaluation	30%	
	class participation			
10.6 Minimum performance standards				
The final grade should be greater than or equal to 5.				

Date	Signature of course coordinator	Signature of seminar coordinator
02.05.2016	Prof. Nicolae Popovici, Ph.D.	Prof. Nicolae Popovici, Ph.D.

Prof. Nicolae Popovici, Ph.D. 02.05.2016

Signature of the head of department

Date of approval

.....

Prof. Octavian Agratini, Ph.D.