SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics and Computer Science of the
	Hungarian Line
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Data Analysis and Modelling
Qualification	

2. Information regarding the discipline

2.1 Name of the	dis	scipline	Information retrieval /				
			Inf	Információ-visszakeresés /			
			Regăsirea informației				
2.2 Course coor	din	ator	Bodó Zalán-Péter				
2.3 Seminar coo	2.3 Seminar coordinator Bodó Zalán-Péter						
2.4. Year of	2	2.5	1	2.6. Type of	Е	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	1+2
				seminar/laboratory	
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	42
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					40
Tutorship					14
Evaluations					6
Other activities:					-
0.5 m + 1 1 1 1 1 1 1 1		120			

3.7 Total individual study hours	130
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	None
4.2. competencies	Algorithms, programming skills, basic math (algebra, probability theory, statistics)

5. Conditions (if necessary)

5.2. for the seminar /lab	Laboratory with computers; high level programming language
activities	environment(s) (e.gNET, Java, Python); Matlab

6. Specific competencies acquired

- %	Understanding the concepts, methods and models used in Information Retrieval (IR).
Professional competencies	Understanding the principles, design and implementation of data storage techniques, conversion between formats.
Pro	Study and analysis of algorithms, that retrieve/extract information from textual databases.
	Responsible execution of lab assignments, research and practical reports.
al :ies	Application of efficient and rigorous working rules.
vers	Manifest responsible attitudes toward the scientific and didactic fields.
Transversal competencies	Respecting the professional and ethical principles.

7. Objectives of the discipline (outcome of the acquired competencies)

discipline in IR.	R, studying and analyzing the algorithms used
term-document i Building indices Binary IR Probabilistic mo The Vector Space	odels in IR ce Model (VSM) unsupervised learning in IR k analysis

8. Content

8.1 Course	Teaching methods	Remarks
1. Introductory concepts, definitions, introduction to	interactive exposure,	TOTALIS
information retrieval systems.	explanation,	
information retrieval systems.	conversation,	
	/	
	didactical	
	demonstration	
2. Indexing techniques.	interactive exposure,	
	explanation,	
	conversation,	
	didactical	
	demonstration	
3-4. The Vector Space Model (VSM).	interactive exposure,	
	explanation,	
	conversation,	
	didactical	

	demonstration
5. Evaluation of IR systems.	interactive exposure,
	explanation,
	conversation,
	didactical
	demonstration
6. Probabilistic models in IR.	interactive exposure,
	explanation,
	conversation,
	didactical
	demonstration
7. Language models in IR.	interactive exposure,
	explanation,
	conversation,
	didactical
	demonstration
8-9. Classification methods in IR: Naive Bayes,	interactive exposure,
Rocchio's algorithm, regularized least squares (RLS),	explanation,
support vector machines (SVM), etc.	conversation,
	didactical
	demonstration
10-11. Unsupervised methods in IR, clustering	interactive exposure,
algorithms.	explanation,
	conversation,
	didactical
	demonstration
12-13. Methods of dimensionality reduction, matrix	interactive exposure,
factorization techniques.	explanation,
	conversation,
	didactical
	demonstration
14. Web search, link analysis.	interactive exposure,
	explanation,
	conversation,
	didactical
D2 11	demonstration

Bibliography

- [1] MANNING C.D., RAGHAVAN P., SCHÜTZE H. *Introduction to Information Retrieval*. Cambridge University Press, 2009.
- [2] BAEZA-YATES R., RIBEIRO-NETO B. Modern Information Retrieval. Addison-Wesley, 1999.
- [3] VAN RIJSBERGEN C. J. Information Retrieval (2nd ed.). Butterworths, 1979.
- [4] DOMINICH S. The Modern Algebra of Information Retrieval. Springer, 2008.
- [5] BODON F. *Adatbányászati algoritmusok*. GNU Free Documentation License, 2010 (http://www.cs.bme.hu/~bodon/magyar/adatbanyaszat/tanulmany/adatbanyaszat.pdf).

8.2 Seminar / Laboratory	Teaching methods	Remarks
1. Introduction to Perl and/or Python programming.	documentation,	
	explanation,	
	conversation	
2. Famous classification algorithms in IR: Naive	documentation,	
Bayes, Rocchio, SVM, etc.	explanation,	
	conversation	
3-4. The Apache Solr indexing/search engine.	documentation,	
	explanation,	

	conversation	
5-6. The Apache Hadoop software library.	documentation,	
	explanation,	
	conversation	
7. Summary, project presentations.		Student presentations on
		selected related topics.

Bibliography

[1]-[5]+

[6] MANNING C. D., SCHÜTZE H. Foundations of statistical language processing. MIT Press,

Cambridge, 1999.

[7] SEBASTIANI F. Machine Learning in Automated Text Categorization. ACM Computing Surveys, 2002, vol. 34, pp. 1–47.

[8] http://nlp.stanford.edu/IR-book/

[9] http://www.stanford.edu/class/cs276/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with the course "Information Retrieval and Web Search" at Stanford University (http://web.stanford.edu/class/cs276/), and is based on the book "Introduction to Information Retrieval" by Manning, Raghavan and Schütze (http://nlp.stanford.edu/IR-book/, see also the bibliography above).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the	
			grade	
10.4 Course	Written exam at the end of	Written exam	60%	
	the semester			
10.5 Seminars/laboratory	Presentation of the software	Evaluation of the project	40%	
	projects			
10.6 Minimum performance standards				
At every evaluation, minimum half of the points needs to be collected.				

Date Signature of course coordinator Signature of seminar coordinator

19.04.2016 Bodó Zalán-Péter Bodó Zalán-Péter

Date of approval Signature of the head of department

András Szilárd