SYLLABUS

${\bf 1.}\ Information\ regarding\ the\ programme$

1.1 Higher education	Universitatea Babeș-Bolyai Cluj-Napoca	
institution		
1.2 Faculty	Matematică și Informatică	
1.3 Department	Matematică	
1.4 Field of study	Matematică	
1.5 Study cycle	Master	
1.6 Study programme /	Advanced Mathematics	
Qualification		

2. Information regarding the discipline

2.1 Name of the discipline Homological Algebra							
2.2 Course coordinator Assoc. Prof. Simion Breaz							
2.3 Seminar coordinator				Assoc. Prof. Simion Breaz			
2.4. Year of	2	2.5	3	2.6. Type of	E	2.7 Type of	DC
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					42
Additional documentation (in libraries, on electronic platforms, field documentation)					32
Preparation for seminars/labs, homework, papers, portfolios and essays					32
Tutorship					9
Evaluations					18
Other activities:					
3.7 Total individual study hours		133			•

3.7 Total individual study hours	133
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

es es	Knowledge, understanding and use of main concepts and results in Homological Algebra
ons	(complexes, homology and cohomology, derived functors)
Professional competencies	Ability to use fundamental theoretical concepts and in various fields of mathematics fields of mathematics (Algebra, Topology, Banach Spaces, Fixed Point Theory)
	Ability to inform themselves, to work independently or in a team;
ersal encies	Ability to approach complex problems and to use information from various specific fields;
Transversal competencies	Ability to identify and use advanced techniques and methods in order to realize a specific research.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	Knowledge, understanding and use of main concepts and results in
discipline	Homological Algebra
	Ability to use concepts and fundamental results in some specific fields of
	mathematics (module theory, topological spaces, Banach spaces)
7.2 Specific objective of the	Understanding the basic concepts about categories, complexes, resolutions,
discipline	sheaves.
	Ability to use specific derived functors (Ext, Tor, Pext) in concrete situations.

8. Content

8.1 Course	Teaching methods	Remarks
1. Preliminaries	Lectures, didactical	
	demonstration,	
	conversation.	
2. Modules	Lectures, didactical	
	demonstration,	
	conversation.	
3. Categories	Lectures, didactical	
	demonstration,	
	conversation.	
4. Limits and colimits	Lectures, didactical	
	demonstration,	
	conversation.	
5. Functors	Lectures, didactical	
	demonstration,	
	conversation.	
6. Injective and projective modules	Lectures, didactical	
	demonstration,	
	conversation.	

7. Flat modules	Lectures, didactical demonstration, conversation.
8. Complexes	Lectures, didactical demonstration, conversation.
9. Homology functors	Lectures, didactical demonstration, conversation.
10. Derived functors	Lectures, didactical demonstration, conversation.
11. Ext	Lectures, didactical demonstration, conversation.
12. Tor	Lectures, didactical demonstration, conversation.
13. Sheaves	Lectures, didactical demonstration, conversation.
14. Sheaf cohomology	Lectures, didactical demonstration, conversation.
Bibliography	

- I. Moerdijk: Notes on Homological Algebra, course notes, <u>www.math.ru.nl/topology/Notes%20on%20Homological%20Algebra.pdf</u>
 J.J. Rotman: An Introduction to Homological Algebra, Springer, 2009

8.2 Seminar / laboratory	Teaching methods	Remarks
1. The fundamental group	problematization,	
	exercises, problem	
	solving,	
2. Modules	problematization,	
	exercises, problem	
	solving,	
3. Example of Categories	problematization,	
	exercises, problem	
	solving,	
4. Categories of Banach spaces	problematization,	
	exercises, problem	

	solving,
5. The additive category of Banach spaces	problematization, exercises, problem solving,
6. The category of Abelian groups	problematization, exercises, problem solving,
7. Flat modules	problematization, exercises, problem solving,
8. Directed limits	problematization, exercises, problem solving,
9. Inverse limits	problematization, exercises, problem solving,
10. Functors	problematization, exercises, problem solving,
11. Ext and Tor	problematization, exercises, problem solving,
12. Ext and Tor for abelian groups	problematization, exercises, problem solving,
13. Relative homological algebra	problematization, exercises, problem solving,
14. Projective, injective and flat Banach spaces	problematization, exercises, problem solving,

Bibliography

- 1. S. Breaz, G. Calugareanu, G. Modoi, D. Valcan: Exercices in Abelian Group Theory, Kluwer 2003.
- 2. J. Cigler, V. Losert, P. Michor: Banach Modules and Functors on Cateories of Banach Specaes, Marcel Dekker, 1979.
- 3. A. Hatcher: Algebraic Topology, Cambridge University Press, 2001, http://www.math.cornell.edu/~hatcher/AT/AT.pdf
- 4. C. Schochet: A Pext primer: Pure extensions and lim¹ for infinite abelian groups, NYJM Monographs, 2003, http://nyjm.albany.edu/m/2003/1v.pdf

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content is in accordance with the curricula of many important universities where pure mathematics plays important places in their research.

This discipline is useful since it realizes connections between various mathematical domains, and it is well known that the methods of homological algebra were used during the time to solve important problems in mathematics.

The methods and tools presented here are often used in specifical PhD research activities.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the	
			grade (%)	
10.4 Course	Concepts and basic results	Final exam	50%	
	Standard example			
10.5 Seminar/lab activities	Ability to use the concepts	Final exam and a midterm	25%+25%	
	in order to solve problems	test.		
10.6 Minimum performance standards				
At least grade 5 from 10.				

Date	Signature of course coordinator	Signature of seminar coordinator	
30.04.2016	Assoc. Prof. Simion Breaz	Assoc. Prof. Simion Breaz	
Date of approval	Signature of the head of department		
	Prof. Octavian Agratini		