SYLLABUS

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Master of Advanced Mathematics
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Ap				proximation techniques	of the	functions	
2.2 Course coordinator				Professor Agratini Octavian, PhD			
2.3 Seminar coordinator				Professor Agratini Octavian, PhD			
2.4. Year of	1	2.5	2	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					40
Additional documentation (in libraries, on electronic platforms, field documentation)					44
Preparation for seminars/labs, homework, papers, portfolios and essays					50
Tutorship					10
Evaluations					14
Other activities:					
3.7 Total individual study hours 158					

5.7 Total mulvidual study nouis	150
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis	
	Special Topics in Numerical Analysis	
4.2. competencies	Comparative assessment and efficient use of various methods of demonstration	

5. Conditions (if necessary)

5.1. for the course	-
5.2. for the seminar /lab	

6. Specific competencies acquired

ofessional	npetencies	 The ability to understand and manipulate concepts, results and theories advanced in mathematics Ability to use the knowledge gained and complementary in achieving a PhD in Mathematics
unsversal Pro	npetencies con	Ability to self-improvement and to train continuously
Tra	con	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Assimilation of modern techniques of approximation of functions / signals
7.2 Specific objective of the discipline	 Deepening different construction methods of linear positive operators Acquiring knowledge of Fourier analysis and wavelets analysis Knowledge of the outstanding classes of approximation operators of discrete and continuous type

8. Content

8.1 Course	Teaching methods	Remarks
1. Positive linear operators: definitions, properties.	Interactive exposure:	
Bohman-Korovkin theorems	explanation, conversation	
2. Moduli of smoothness. Properties	Interactive exposure:	
	explanation, conversation	
3. Quantitative estimates. The error of approximation	Interactive exposure:	
	explanation, conversation	
4. K – functionals. Properties	Interactive exposure:	
	explanation, conversation	
5. Integral generalizations of discrete type	Interactive exposure:	
approximation processes. Kantorovich and	explanation, conversation	
Durrmeyer operators		
6. Summation methods: Cesaro, Euler, Jakimovski	Interactive exposure:	
	explanation, conversation	
7. Random approximation schemes. Feller type	Interactive exposure:	
operators	explanation, conversation	
8. Approximation in periodical spaces	Interactive exposure:	
	explanation, conversation	
9. Windowed Fourier transforms. Gabor formulas	Interactive exposure:	
	explanation, conversation	
10. Wavelets. Franklin and Stromberg direction	Interactive exposure:	
	explanation, conversation	
11. Multi resolution analysis	Interactive exposure:	
	explanation, conversation	
12. On mother wavelet and father wavelet	Interactive exposure:	
	explanation, conversation	
13. Wavelets decompositions and reconstructions	Interactive exposure:	
	explanation, conversation	
	Interactive exposure:	
14. Integral wavelets transform	Explanation, conversation	

Bibliography

[1] Agratini, O., Blaga, P., Coman, Gh., *Lectures on Wavelets, Numerical Methods and Statistics*, Casa Cărții de Știință, Cluj-Napoca, 2005.

[2] Francesco Altomare, Michele Campiti, *Korovkin – type Approximation Theory and its Applications*, de Gruyter Studies in Mathematics, Vol. 17, Walter de Gruyter, Berlin New York, 1994.

[3] Lokenath Debnath, Wavelet Transforms & Their Applications, Birkhauser, Boston, 2002.

8.2 Seminar	Teaching methods	Remarks
1. Spaces of functions and their characteristic	Exercise, dialogue,	
properties. Inequalities in normed spaces	individual study	
2. Best approximation to a given function	Exercise, dialogue,	
	individual study	
3. Bernstein polynomials. Properties	Exercise, dialogue,	
	individual study	
4. Discrete type linear positive operators: Szasz,	Exercise, dialogue,	
Baskakov	individual study	
5. Convolution product. Properties	Exercise, dialogue,	
	individual study	
6. Convolution operators. Approximation properties	Exercise, dialogue,	
	individual study	
7. Reserved for a written paper (quiz)	Exercise, dialogue,	
	individual study	
8. Stancu operators associated with the Markov-Polya	Exercise, dialogue,	
urn scheme	individual study	
9. Fourier transforms. Problems on the theme of the	Exercise, dialogue,	
same week lecture	individual study	
10. Window functions - calculating the center and	Exercise, dialogue,	
radius	individual study	
11. Example of orthogonal wavelet – Haar function	Exercise, dialogue,	
	individual study	
12. B – spline functions. Properties	Exercise, dialogue,	
	individual study	
13. Examples of mother - wavelets	Exercise, dialogue,	
	individual study	
14. Linear operators generated by a scaling function	Exercise, dialogue,	
	individual study	

Bibliography

[4] Agratini, O., Aproximare prin operatori liniari, Presa Universitară Clujeană, Cluj-Napoca, 2000.

[5] Agratini, O., Chiorean, I., Coman, Gh., Trîmbiţaş, R., *Analiză numerică și teoria aproximării*, Vol. III, Presa Universitară Clujeană, Cluj-Napoca, 2002.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

This program covers the necessary basic knowledge in this area Software companies consider important in that it provides a solid theoretical foundation in skills development programmer.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course		Written exam	65%		
10.5 Seminar		Quiz Continous observations	25% 10%		
10.6 Minimum performance standards					
At least grade 5 (from a scale of 1 to 10) at written exam					

Date

Signature of course coordinator

Signature of seminar coordinator

March 10th, 2016

Octavian Agratini

Octavian Agratini

Date of approval

March 15th, 2016

Signature of the head of department

Octavian Agratini