SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Software Engineering
Qualification	

2. Information regarding the discipline

2.1 Name of th	e di	scipline					
(en) M				Methodologies for Software Processes			
(ro)	(ro) Metodologii pentru Procese Software						
2.2 Course coo	2.2 Course coordinator Assoc. Prof. Eng. Florin Craciun						
2.3 Seminar coordinator Assoc. Prof. Eng. Florin Craciun							
2.4. Year of	1	2.5	2	2.6. Type of	E	2.7 Type of	DF
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3	.2	2	3.3	2
		course			seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3	.5	28	3.6	28
		course			seminar/laboratory	
Time allotment:						hours
Learning using manual, course support, bibliography, course notes						30
Additional documentation (in libraries, on electronic platforms, field documentation)						10
Preparation for seminars/labs, homework, papers, portfolios and essays					59	
Tutorship					10	
Evaluations					10	
Other activities:					-	
3.7 Total individual study hours 119						
3.8 Total hours per semester 175						
3.9 Number of ECTS credits 7						

4. Prerequisites (if necessary)

4.1. curriculum	• None
4.2. competencies	Basic software development skills

5. Conditions (if necessary)

5.1. for the course	

6. Specific competencies acquired

Professional competencies	 Understanding and working with basic concepts in software engineering; Capability of analysis and synthesis; Proficient use of methodologies and tools specific tool software systems Organization of software production processes.
Transversal competencies	 Team work capabilities; able to fulfill different roles Professional communication skills; concise and precise description, both oral and written, of professional results, Antepreneurial skills;

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 be able to apply basic methods for software process formalization
7.2 Specific objective of the discipline	 know the main features of the common software process models. be able to represent the software processes using SPEM standard. be able to create new software processes. be able to use CASE tools for authoring, configuring and publishing software processes know the principles of different software development methodologies: model driven development, agile model driven development, feature driven development, use case driven development, domain driven development, test driven development.

8. Content		
8.1 Course	Teaching methods	Remarks
 Software Process Concepts. Definitions. Main concepts: role, work product, activity. 	Exposure, description, explanation, debate and dialogue, discussion of case studies	
 Software Process Models. Typical tasks and life cycle of the more common software development models: ad-hoc development, waterfall model, v-model, iterative development, prototyping, rapid application development, exploratory model, spiral model, reuse model, unified process. 	explanation, debate and dialogue, discussion of case studies	

3. Software and System Process Engineering Meta-Model (SPEM). Meta-model architecture and principles. SPEM UML profile. Core. Process structure. Process behavior.	Exposure, description, explanation
 4. Software and System Process Engineering Meta-Model (SPEM). Managed content. Method content. Process with methods. Method Plugin. Process diagrams. 	Exposure, description, explanation
 Software Process Frameworks. Eclipse Process Framework Project (EPF). 	Exposure, description, explanation, discussion of case studies
 Software Process Frameworks. Eclipse Open Unified Process (OpenUP). 	Exposure, description, explanation, discussion of case studies
 Model Driven Architecture (MDA). Basic Concepts. MDA transformations. 	Exposure, description, explanation,
8. Model Driven Architecture (MDA). Query/View transformation (QVT). Model to text transformation (M2T).	Exposure, description, explanation
 Agile Model Driven Development (AMDD). Agile modeling. Principles. Best practices. Approaches for applying AMDD on projects. 	Exposure, description, explanation, discussion of case studies
 10. Feature Driven Development (FDD). FDD process. Feature oriented software development (FOSD). FOSD phases. Software product lines. 	Exposure, description, explanation, discussion of case studies
11. Use Case Driven Development. Goal driven view. Types of alternative courses. Use case fundamentals.	Exposure, description, explanation, discussion of case studies
12. Use Case Driven Development. Practical issues. Iconix process.	Exposure, description, explanation, discussion of case studies
 Domain Driven Development (DDD). Ubiquitous language. Bounded contexts. Layered architecture. Aggregates. Factories. Repositories. Services. 	Exposure, description, explanation, discussion of case studies
14. Test Driven Development (TDD). Fundamentals. Examples.	Exposure, description, explanation, discussion of case studies
Bibliography	

Bibliography

1. Steve Adolph, Paul Bramble, Alistair Cockburn, and Andy Pols, Patterns for Effective Use Cases, Addison-Wesley, 2002.

2. Scott W. Ambler, Agile Model Driven Development: The Key to Scaling Agile Software Development, 2009, http://www.agilemodeling.com/essays/amdd.htm

3. Sven Apel and Christian Kastner, An overview of Feature-Oriented Software Development,

Journal of Object Technology, vol. 8, no. 5, July-August 2009.

- 4. Kent Beck, Test-Driven Development by Example, Addison-Wesley, 2002.
- 5. Eric Evans, Domain-Driven Design, Addison-Wesley, 2004.
- 6. Eclipse Process Framework Project (EPF), 2010, http://www.eclipse.org/epf/
- 7. Eclipse Open Unified Process (OpenUP), 2010, http://epf.eclipse.org/wikis/openup
- 8. OMG, Model-Driven Architecture, 2003, http://www.omg.org/cgi-bin/doc?omg/03-06-01
- 9. OMG, Software & Systems Process Engineering Meta-Model Specification (SPEM) version 2.0, 2008, <u>http://www.omg.org/spec/SPEM/2.0/</u>
- 10. Clay Williams, Matthew Kaplan, Tim Klinger, and Amit Paradkar, Toward Engineered, Useful Use Cases, Journal of Object Technology, vol. 4, no. 6, August 2005.

8.2 Seminar / laboratory	Teaching methods	Remarks
 Project1: Describe a software process in SPEM 	Use practical tools to implement group projects. Discuss research papers.	Seminar is organized as a total of 14 hours – 2 hours every second week Project is organized as a total of 14 hours – 2 hours every
2. Seminar1: Discuss research papers	Use practical tools to implement group projects. Discuss research papers.	
3. Project2: Describe a software process in SPEM	Use practical tools to implement group projects. Discuss research papers.	
4. Seminar2: Discuss research papers	Use practical tools to implement group projects. Discuss research papers.	
 Project3: Describe a software process in SPEM 	Use practical tools to implement group projects. Discuss research papers.	
6. Seminar3: Discuss research papers	Use practical tools to implement group projects. Discuss research papers.	
7. Project4: A project in EPF	Use practical tools to implement group projects. Discuss research papers.	
8. Seminar4: Discuss research papers	Use practical tools to implement group projects. Discuss	

	research papers.
9. Project5: A project in EPF	Use practical tools to
	implement group
	projects. Discuss
	research papers.
10. Seminar5: Discuss research papers	Use practical tools to
	implement group
	projects. Discuss
	research papers.
11. Project6: A project in EPF	Use practical tools to
	implement group
	projects. Discuss
	research papers.
12. Seminar6: Discuss research papers	Use practical tools to
	implement group
	projects. Discuss
	research papers.
13. Project7: A project in EPF	Use practical tools to
	implement group
	projects. Discuss
	research papers.
14. Seminar7: Discuss research papers	Use practical tools to
	implement group
	projects. Discuss
	research papers.
Bibliography	
two practical tools: MagicDraw and EPF.	
Research papers	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Software Engineering studies;
- The content of the course is considered by the software companies as important for average software development skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in
			the grade (%)
10.4 Course	- know the basic principle of	Written exam	40.00%
	the domain;		
	- apply the course concepts		
	- problem solving		
10.5 Seminar/lab	- be able to implement	-Practical examination	60.00%
activities	course concepts		
	- e - be able to use tools for		
	different software process		
	concept		
	- be able to do a critical		
	evaluation of research		
	papers		
	- to be able to write a critical		

	essay		
10.6 Minimum performance standards			
At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.			

Date Signature of course coordinator

..... Assoc. Prof. En. Florin CRACIUN

Signature of seminar coordinator

Assoc. Prof. Eng. Florin CRACIUN

Date of approval

Signature of the head of department

.....

.....