SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme / Qualification	Software Engineering

2. Information regarding the discipline

2.1 Name of the dis	scipl	ine	Ma	athematical foundation	tions of the	decision-making	g process
2.2 Course coordin	ator		Assoc. Prof. Nicolae Popovici, Ph.D.				
2.3 Seminar coordi	nato	r	As	soc. Prof. Nicolae	Popovici, P	h.D.	
2.4. Year of study	1	2.5 Semester		2.6. Type of evaluation	Exam	2.7 Type of discipline	Compulsory

3. Total estimated time (hours/semester of didactic activities)

A	-					
3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar	1	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6 seminar	14	
Time allotment:						
Learning using manual, course suppo	ort, bił	oliography, course notes	S		63	
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays					21	
Tutorship						
Evaluations					35	
Other activities:					-	
3.7 Total individual study hours		133			·	
3.8 Total hours per semester		175				

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	• Algebra
	• Geometry
	Mathematical Analysis
4.2. competencies	Basic notions of linear algebra, analytical geometry and differential
	calculus in the n-dimensional Euclidean space

7

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

Professional competencies	 Ability to understand and manipulate advanced concepts and results in the field of optimization theory. Ability to use mathematical methods for solving optimization problems.
Transversal competencies	• Ability to model and analyze from a mathematical point of view practical decision-making processes from other sciences, economics and engineering.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	The study of fundamental mathematical concepts and practical methods		
discipline	relevant to the decision-making processes.		
7.2 Specific objective of the	Students should acquire knowledge about:		
discipline	• Partially ordered sets;		
	• Convex sets, cones and convex functions;		
	Scalar optimization;		
	• Vector (multicriteria) optimization.		

8. Content

8.1 Course	Teaching methods	Remarks
1. Partially ordered sets.	Direct instruction, mathematical proof,	
	exemplification	
2. Convex sets and cones.	Direct instruction,	
	mathematical proof,	
	exemplification	
3. Convex functions.	Direct instruction,	
	mathematical proof,	
	exemplification	
4. Preference relations induced by a scalar	Direct instruction,	
function. Scalar optimization problems.	mathematical proof,	
	exemplification	
5. Characterization of optimal solutions by means	Direct instruction,	
of level sets. Existence and unicity of optimal	mathematical proof,	
solutions.	exemplification	
6. Sufficient and necessary optimality conditions.	Direct instruction,	
	mathematical proof,	
	exemplification	
7. Partially ordered linear spaces.	Direct instruction,	
	mathematical proof,	
	exemplification	
8. Preference relations induced by a vector	Direct instruction,	
function. Vector (multicriteria) optimization	mathematical proof,	
problems.	exemplification	
9. Characterization of strongly/ weakly efficient	Direct instruction,	
solutions by means of level sets. Existence of	mathematical proof,	
efficient solutions	exemplification	

10. Sufficient and necessary conditions for strong/weak efficiency.	Direct instruction, mathematical proof,
	exemplification
11. Scalarization methods.	Direct instruction,
	mathematical proof,
	exemplification
12. Proper efficient solutions, compromise	Direct instruction,
solutions.	mathematical proof,
	exemplification
13. The structure of efficiency sets in the	Direct instruction,
outcome/decision space.	mathematical proof,
	exemplification
14. Decomposition of multicriteria optimization	Direct instruction,
problems.	mathematical proof,
	exemplification
Bibliography	

Bibliography

1. ANDERSON, D.R., SWEENEY, D.J., WILLIAMS, T.A., An Introduction to Management Science. Quantitative Approaches to Decision Making, South-Western College Publishing, Cincinnati, 2000.

 BRECKNER, B.E., POPOVICI, N.: Convexity and Optimization. An Introduction, EFES, Cluj-Napoca, 2006.

3. BRECKNER, W.W.: Cercetare operațională, Universitatea Babeș-Bolyai, Cluj-Napoca, 1981.

4. POPOVICI, N.: Optimizare vectoriala, Casa Cartii de Stiinta, Cluj-Napoca, 2005.

5. VANDERBEI, R.: Linear Programming. Foundations and Extensions, Springer, Boston, 2008.

6. YU, P.L.: Multiple Criteria Decision Making: Concepts, Techniques and Extensions, Plenum Press, New York - London, 1985.

8.2 Seminar	Teaching methods	Remarks
1. Preorder relations.	Problem-based	2 hours
	instruction, debate,	
	mathematical proofs	
2. Convex sets and cones.	Problem-based	2 hours
	instruction, debate,	
	mathematical proofs	
3. Convex functions.	Problem-based	2 hours
	instruction, debate,	
	mathematical proofs	
4. Geometric interpretation of the level sets.	Problem-based	2 hours
	instruction, debate,	
	mathematical proofs	
5. Scalar optimization problems solved by a	Problem-based	2 hours
geometric approach	instruction	
6. Scalar optimization problems solved by means	Problem-based	2 hours
of optimality conditions.	instruction, debate,	
	mathematical proofs	
7. Multicriteria optimization problems solved by	Problem-based	2 hours
a geometric approach.	instruction, debate,	
	mathematical proofs	

Bibliography

2. BRECKNER, W.W., DUCA, D.: Culegere de probleme de cercetare operationala, Universitatea Babes-Bolyai, Facultatea de Matematica, Cluj-Napoca, 1983.

4. POPOVICI, N.: Optimizare vectoriala, Casa Cartii de Stiinta, Cluj-Napoca, 2005.

^{1.} BRECKNER, B.E., POPOVICI, N.: Probleme de cercetare operationala, EFES, Cluj-Napoca, 2006.

^{3.} MORDUKHOVICH, B.S., NAM, N.M., An easy path to convex analysis and applications, Morgan & Claypool Publishers, Milton Keynes, 2014.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course ensures a solid theoretical background, according to national and international standards

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the $\frac{10}{2}$	
			grade (%)	
10.4 Course	- Knowledge of theoretical	Written exam	70%	
	concepts and capacity to			
	rigorously prove the main			
	theorems;			
	- Ability to solve practical			
	exercises and theoretical			
	problems			
10.5 Seminar/lab activities	Attendance and active	Continuous evaluation	30%	
	class participation			
10.6 Minimum performance standards				
The final grade should be greater than or equal to 5.				

Date	Signature of course coordinator	Signature of seminar coordinator
15.04.2016	Assoc. Prof. Nicolae Popovici, Ph.D.	Assoc. Prof. Nicolae Popovici, Ph.D.

Date of approval

.....

Signature of the head of department

Prof. Octavian Agratini, Ph.D.