
SYLLABUS 
1. Information regarding the programme 
1.1 Higher education 
institution  

Babeş Bolyai University 

1.2 Faculty Faculty of Mathematics and Computer Science 
1.3 Department Department of Computer Science 
1.4 Field of study Computer Science 
1.5 Study cycle Bachelor 
1.6 Study programme / 
Qualification  

Computer Science 

 
2. Information regarding the discipline  
2.1 Name of the discipline Advanced Compiler Design 
2.2 Course coordinator  Assoc.Prof.PhD. Simona Motogna 
2.3 Seminar coordinator Assoc.Prof.PhD. Simona Motogna 
2.4. Year of 
study 

3 2.5 
Semester 

6 2.6. Type of 
evaluation 

C 2.7 Type of 
discipline 

Optional 

 
3. Total estimated time (hours/semester of didactic activities)  
3.1 Hours per week  3 Of which: 3.2 course 2 3.3 

seminar/laboratory 
1 

3.4 Total hours in the curriculum  36 Of which: 3.5 course 24 3.6 
seminar/laboratory 

12 

Time allotment: Hours 
Learning using manual, course support, bibliography, course notes 20 
Additional documentation (in libraries, on electronic platforms, field documentation)  30 
Preparation for seminars/labs, homework, papers, portfolios and essays 30 
Tutorship 29 
Evaluations 30 
Other activities: .................. - 
3.7 Total individual study hours  139 
3.8 Total hours per semester 175 
3.9 Number of ECTS credits 7 
 
4. Prerequisites (if necessary) 
4.1. curriculum • Formal Languages and Compiler Design course 
4.2. competencies • Basic knowledge of front-end of a compiler 

• Medium programming skills 
 
5. Conditions (if necessary) 

 
6. Specific competencies acquired  

Pr
of

es
si

on
al

 
co

m
pe

te
nc

ie
s C 4.1 Definition of concepts and basic principles of computer science, and of mathematical 

theories an models  
C 4.2 Interpretation of mathematical and computer science models (formal)  
C 4.4 Use of simulation to study the behavior of models and to evaluate their performance  

 

5.1. for the course •  
5.2.  for the seminar /lab 
activities 

• Laboratory: computers and use of a programming language 
environment 



T
ra

ns
ve

rs
al

 
co

m
pe

te
nc

ie
s 

CT1 Apply rules to: organized and efficient work, responsabilities of didactical and scientifical 
activities and creative capitalization of own potential, while respecting principles and rules for 
professional ethics  
CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and 
develop capabilities for capitalization of  knowledge, accomodation to society requirements and 
communication in English	 
 

 
7. Objectives of the discipline (outcome of the acquired competencies) 

 
8. Content 
8.1 Course Teaching methods Remarks 

1. Review compiler phases. Semantic analysis. 
Define attribute grammar. [1,4] 

Conversation: debate, 
dialogue; exposuse: 
description, explanation, 
examples 

 

2.  Attribute grammar evaluators. L-attributed 
grammars, S-attributed grammars [2,4] 

exposure: description, 
explanation, examples, 
discussion of case studies 

 

3. Manual methods [2,4]: Control flow graph, 
Symbolic interpretation,  Data flow equations 

exposure: description, 
explanation, example 

 

4. Intermediary code generation [1,2,4]. Three-
address code: quadruples, triples 

exposure: description, 
explanation, example; 
dialogue, case studies 

 

5. Intermediary code optimization [1,4] exposure: description, 
explanation, example, 
dialogue, debate 

 

6. Object code generation. Optimizations of the 
object code [1,2,4] 

exposure: description, 
explanation, example, 
discussion of case studies 

 

7. Compiler design for imperative and object-
oriented languages (I): Identification, Type 
checking, Type table, Source Language Data 
Representation & Handling [2] 

exposure: description, 
explanation, example, 
dialogue, debate, case 
studies 

 

8. Compiler design for imperative and object-
oriented languages (II):, Functions- activation 
records, Object Type, Inheritance, 
Polymorphism [2,3] 

exposure: description, 
explanation, example, 
case studies, dialogue, 
debate 

 

9. Compiler design for functional languages [2,3] exposure: description, 
explanation, example, 
case studies, dialogue, 
debate 

 

10. Compiler design for logical languages [2,3] exposure: description, 
explanation, example, 
case studies, dialogue, 
debate 

 

7.1 General objective of the 
discipline 
 

• Be able to understand compiler design and to implement compiler 
techniques 

• Be able to understand compiler optimizations 
• Improved programming skills 

7.2 Specific objective of the 
discipline 
 

• Acquire knowledge about back-end of a compiler 
• Understand concepts: virtual machine, JIT compilation, compiler 

optimizations, machine code generation 



11. Memory management: Garbage Collection 
mechanism [2,3,5] 

exposure: description, 
explanation, example, 
case studies, dialogue, 
debate 

 

12. Java Language Design [3,5] exposure: description, 
explanation, example, 
case studies, dialogue, 
debate 

 

13. .NET Language Design [4,5,6] exposure: description, 
explanation, example, 
case studies, dialogue, 
debate 

 

14.  Final written exam evaluation  
Bibliography 
1. GRUNE, DICK - BAL, H. - JACOBS, C. - LANGENDOEN, K.: Modern Compiler Design, John Wiley, 

2000  
2. MITCHELL, JOHN: Foundations for Programming Languages, MIT Press, 1996 
3. MOTOGNA, SIMONA: Metode de proiectare a compilatoarelor, Ed. Albastra, 2006 
4. RICHTER, J.: Applied Microsoft .NET Framework Programming, Microsoft Press, 2002 
5. LIDIN, SERGE: Inside .NET IL Assembler, Microsoft Press International, 2002 
6. STUTZ, DAVID - NEWARD, TED - SHILLING, GEOFF: Shared Source CLI Essentials, O'Reilly UK, 

2003 
7. Sun Java Systems, [http://docs.sun.com/db/prod/java.sys], 01.09.2004 
 
8.2 Seminar / laboratory Teaching methods Remarks 

1. Task 1: Create an attribute grammar and write 
a program for attribute evaluation 
1.1 define attribute grammar 

Explation, dialogue, case 
studies 

Professor will 
assigned a specific 
statement to be 
modelled with 
attribute grammars 

2. Task 1: Create an attribute grammar and write 
a program for attribute evaluation 
1.2 refine attribute grammar to satisfy 
evaluator restrictions 

Explation, dialogue, case 
studies 

 

3. Task 1: Create an attribute grammar and write 
a program for attribute evaluation 
1.3 program for attribute evaluation 

Explation, dialogue, case 
studies 

 

4. Task 1: Create an attribute grammar and write 
a program for attribute evaluation 
1.4 testing of the evaluator and deliver the 
program 

Evaluation  

5. Task 2: Intermediary code generation 
2.1: form of intermediary code; data staructure 
for intermediary code 

Explation, dialogue, case 
studies 

Professor will 
assigned a specific 
statement to be 
transformed to 
intermediary code 

6. Task 2: Intermediary code generation 
2.2: program for intermediary code generation 

Explation, dialogue, case 
studies 

 

7. Task 2: Intermediary code generation 
2.3:testing and delivery of the program 

Evaluation  

8. Task 3: Apply optimization technique to a 
fragment of 3 address code 
3.1 case study: chosen optimization technique 

Explation, dialogue, case 
studies 

Optimization will be 
applied for the result 
of task 2 

9. Task 3: Apply optimization technique to a 
fragment of 3 address code 

Explation, dialogue, case 
studies 

 



3. 2 implement optimization 
10. Task 3: Apply optimization technique to a 

fragment of 3 address code 
3.3 testing and delivery 

Evaluation  

11. Task 4: Object code generation. Transform it to 
object code, using a minimum number of 
registers, determined based on the number of 
live variables. 
4.1 Algorithm for determining the number of 
live variables and minimal number of registers 

 

Explation, dialogue, case 
studies 

Object code will be 
generated for output 
of task 3 

12. Task 4: Object code generation 
4.2 Implement object code generation 

Explation, dialogue, case 
studies 

 

13. Task 4: Object code generation 
4.3 testing and delivery 

Evaluation   

14. Final laboratory: final presentation of tasks Evaluation  
Bibliography 
 Same as course & course notes 
 
 
9. Corroborating the content of the discipline with the expectations of the epistemic community, 
professional associations and representative employers within the field of the program 
 
• The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies; 
• The course exists in the studying program of all major universities in Romania and abroad; 
• The content of the course is considered the software companies as important for advanced 

programming skills 
 
10. Evaluation 
Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the 

grade (%) 
10.4 Course - know the basic principle of 

the domain; 
- apply the course concepts 
- understand advanced topics 
in the field 

Written exam 
 

50% 

10.5 Seminar/lab activities - be able to implement course 
concepts and algorithms 
- apply techniques for 
different classes of 
programming languages 

-Practical examination 
-documentation 
-portofolio 
-continous observations 

50% 

10.6 Minimum performance standards 
Ø At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work. 

 
 

Date  Signature of course coordinator   Signature of seminar coordinator 
.................. Assoc.Prof.PhD. Simona MOTOGNA Assoc.Prof.PhD. Simona MOTOGNA 

 
Date of approval         Signature of the head of department  
...........................................     ...........…............................  


