LEHRVERANSTALTUNGSBESCHREIBUNG

1. Angaben zum Programm

1.1 Hochschuleinrichtung	Babes-Bolyai Universität, Cluj-Napoca
1.2 Fakultät	Mathematik und Informatik
1.3 Department	Informatik
1.4 Fachgebiet	Informatik
1.5 Studienform	Bachelor
1.6 Studiengang /	Informatik
Qualifikation	

2. Angaben zum Studienfach

2.1 LV-Bezeichnu	ıng	LOGIK					
2.2 Lehrverantwortlicher – Vorlesung			Conf. Dr. Christian Săcărea				
2.3 Lehrverantwortlicher – Seminar		Conf. Dr. Christian Săcărea					
2.4 Studienjahr	1	2.5	1	2.6. P 2.7 Art der LV Verpflichte			Verpflichtend
		Semester		Prüfungsform			
2.8 Modulnummer MLG5055							

3. Geschätzter Workload in Stunden

3.1 SWS	5	von denen: 3.2	2	3.3 Seminar/Übung	2
		Vorlesung			
3.4 Gesamte Stundenanzahl im	70	von denen: 3.5	28	3.6 Seminar/Übung	28
Lehrplan		Vorlesung			
Verteilung der Studienzeit:					Std.
Studium nach Handbücher, Kursbuch, Bibliographie und Mitschriften					20
Zusätzliche Vorbereitung in der Bibliothek, auf elektronischen Fachplattformen und durch					10
Feldforschung					
Vorbereitung von Seminaren/Übungen, Präsentationen, Referate, Portfolios und Essays					26
Tutorien					8
Prüfungen					16
Andere Tätigkeiten:					-

3.7 Gesamtstundenanzahl Selbststudium	80
3.8 Gesamtstundenanzahl / Semester	150
3.9 Leistungspunkte	6

4. Voraussetzungen (falls zutreffend)

4.1 curricular	• Algebra
4.2 kompetenzbezogen	•

5. Bedingungen (falls zutreffend)

5.1 zur Durchführung der	 Vorlesungsraum, Beamer, Laptop
Vorlesung	
5.2 zur Durchführung des	Seminarraum

Seminars / der Übung	
----------------------	--

6. Spezifische erworbene Kompetenzen

Berufliche Kompetenzen	Wissen, Verstehen und Anwenden der Grundbegriffe : der algorithmischen Logik der Darstellung der Daten im Rechner des logischen Programmierens
	 Datendarstellung im Rechner – Anwendung in der Rechnerarchitektur Prädikatenlogik – Anwendung in der logischen Programmierung (Prolog)
ıle	Die Algorithmen des automatischen Beweisens der Logik bilden eine theoretische
Transversale Kompetenzen	Grundlage für den Entwurf von automatischen Beweissystemen für die Mathematik,
ısv	Softwareentwicklung, Robotik, natürliche Sprachen, künstliches Sehen usw.
rar	• Grundkenntnisse über boolsche Funktionen und logische Schaltungen – Anwendung in der
I	Elektronik

7. Ziele (entsprechend der erworbenen Kompetenzen)

7.1 Allgemeine Ziele der Lehrveranstaltung	Kenntnis von mathematischen und algorithmischen Grundlagen des logischen Programmierens; Befähigung zum Umgang mit Aussagen - und Prädikatenlogik; Begriffe zur Kodierung und Darstellung der Information im Rechner
7.2 Spezifische Ziele der Lehrveranstaltung	 Formalisierung und Automatisierung rationalen Denkens Rolle der Logik in der Informatik logische Schaltungen

8. Inhalt

8.1 Vorlesung	Lehr- und Lernmethode	Anmerkungen
1. Einleitung, Syntax und Semantik der	Darstellung der Thematik, Diskussion	
Aussagenlogik		
2. Modellierung, Äquivalenzen und	Vortrag, Beweis, Diskussion	
Normalformen		
3. Erfüllbarkeit aussagenlogischer Formeln,	Vortrag, Beweis, Diskussion	

Tableaukalküle	
4. Resolution in der Aussagenlogik I	Vortrag, Beweis, Diskussion
5. Resolution in der Aussagenlogik II	Vortrag, Beweis, Diskussion
6. Prädikatenlogik erster Stufe	Vortrag, Beweis, Diskussion
7. Tableaukalkül in der Prädikatenlogik , Regeln für die Prädikatenlogik, Quantorenregeln	Vortrag, Diskussion
8. Prädikatenlogische Resolution	Vortrag, Beweis, Diskussion
9. Logische Programme, Prolog	Vortrag, Diskussion
10. Boolsche Algebra, Boolsche Funktionen	Vortrag, Beweis, Diskussion
11. Vereinfachen logischer Funktionen, Veitch-Karnaugh Diagramme, Verfahren von Quine-McCluskey	Vortrag, Diskussion
12. Logische Schaltungen und Gatter	Vortrag, Diskussion
13. Logische Schaltkreise (Beispiele)	Vortrag, Diskussion
14. Schaltungsanalyse	Vortrag, Beweis, Diskussion

Literatur

- M. Ben-Ari: Mathematical Logic for Computer Science, Ed. Springer, 2001.
- F.Boian, Bazele Matematice ale Calculatoarelor, Editura Presa Universitara Clujeana, 2002.
- C.L.Chang, R.C.T.Lee: Symbolic Logic and Mechanical Theorem Proving, Academic Press.
- M. Cocan, B. Pop: Bazele matematice ale sistemelor de calcul, Editura Albastra, Cluj-Napoca, 2001.
- M.Fitting: First-order logic and Automated Theorem Proving, Ed.Springer Verlag, 1990.
- M. Lupea, A. Mihis: Logici clasice și circuite logice. Teorie și exemple, ediția 3, Editura Albastra,
- Cluj-Napoca, 2011.
- Mihaela Malita, Mircea Malita, Bazele Inteligentei Artificiale, Vol. I, Logici propozitionale, Ed. Tehnica, Bucuresti, 1987.
- L.C. Paulson: Logic and Proof, Univ. Cambridge, 2000, on-line.
- M. Possega: Deduction Systems, Inst. of Informatics, 2002, on-line.
- D.Tatar: Bazele matematice ale calculatoarelor, 1999.
- Uwe Schöning, Logik für Informatiker, Spektrum Akademischer Verlag, 2000
- Jürgen Dassow, Logik für Informatiker, Vieweg+Teubner Verlag, 2005
- Asser, G., Einführung in die mathematische Logik, vol. 1, Aussagenkalkül, Teubner, Leipzig, 1965.
- Asser, G., Einführung in die mathematische Logik, vol. 3, Prädikatenlogik erster Stufe, Teubner, Leipzig, 1972.
- Asser, G., Einführung in die mathematische Logik, vol. 3, Prädikatenlogik höherer Stufe, Teubner, Leipzig, 1981.

8.2 Seminar / Übung	Lehr- und Lernmethode	Anmerkungen
Seminar 1. Aufgaben - Rechnen in	Beispiele, Diskussionen	
verschiedenen Zahlensystemen		
Seminar 2. Aufgaben:	Beispiele, Diskussionen	
Umrechnung vom Binär- ins Dezimalsystem, Umrechnung vom Dezimal- ins Binärsystem;		
Zahlensysteme und Rechnerarithmetik		
Seminar 3. Aufgaben: Darstellung der Zahlen im Rechner Festkommadarstellung, Gleitkommadarstellung	Beispiele, Diskussionen	
Seminar 4. Aufgaben: Aussagenlogik, Normalformen, Tautologien	Beispiele, Diskussionen, Gruppenarbeit	
Seminar 5. Aufgaben: Aussagenlogik, Normalformen, Tautologie	Beispiele, Diskussionen	
Seminar 6. Aufgaben: Tableaukalkül in der Prädikatenlogik	Beispiele, Diskussionen	
Seminar 7. Aufgaben: Tableaukalkül in der Prädikatenlogik	Beispiele, Diskussionen	
Seminar 8. Aufgaben: Prädikatenlogische Resolution	Beispiele, Diskussionen	
Seminar 9. Aufgaben: Prädikatenlogische Resolution, Normalformen	Beispiele, Diskussionen	
Seminar 10. Beispiele: Logische Programme	Beispiele, Diskussionen, Gruppenarbeit	
Seminar 11. Beispiele: Logische Programme	Beispiele, Diskussionen, Gruppenarbeit	
Seminar 12. Aufgaben: Boolsche Funktionen	Beispiele, Diskussionen	
Seminar 13. Aufgaben: Vereinfachen logischer Funktionen	Beispiele, Diskussionen	
Seminar 14. Aufgaben: Logische Schaltungen	Beispiele, Diskussionen, Gruppenarbeit	

Literatur

- 1. W.Bibel: Automated theorem proving, View Verlag, 1987.
- 2. Cl.BENZAKEN: Systeme formels. Introduction a la logique, ed.Masson, 1991.
- 3. J.P.DELAHAYE: Outils logiques pour l'intelligence artificielle, ed.Eyrolls, 1986.
- 4. D.Tatar: Inteligenta artificiala: demonstrare automata de teoreme si NLP, Ed. Microinformatica, 2001.
- 5. (ed) A.Thayse: From standard logic to Logic Programming, Ed. J.Wiley, vol1(1989), vol2(1989), vol3(1990).

9. Verbindung der Inhalte mit den Erwartungen der Wissensgemeinschaft, der Berufsverbände und der für den Fachbereich repräsentativen Arbeitgeber

Diese Vorlesung wird an international bekannten Universitäten im Fachgebiet Informatik angeboten.

Logik spielt eine zentrale Rolle bei Entwurf, Bau und Betrieb von Computern und Netzen. In ihrer mathematischen Ausprägung als boolesche Algebra wird sie zur Beschreibung elektrischer Schaltungen benutzt. Sie ist also eine Grundlage für die Hardware.

10. Prüfungsform

Veranstaltungsart	10.1 Evaluationskriterien	10.2	10.3 Anteil an der
		Evaluationsmethoden	Gesamtnote
10.4 Vorlesung	Korrekter Umgang mit Aussagen	schriftliche	60%
	- und Prädikatenlogik;	Abschlussarbeit	
	Grundkenntnisse des logisches		
	Programmierens; boolsche		
	Funktionen; logische		
	Schaltungen		
10.5 Seminar / Übung	Anwesenheit, aktive Mitarbeit,	Diskussion	40%
	richtiges Lösen der		
	Hausaufgaben		

10.6 Minimale Leistungsstandards

Grundkenntnisse der Aussagen - und Prädikatenlogik; logisches Programmieren.

Für das Bestehen der Prüfung muss die Mindestnote 5 erzielt werden.

Ausgefüllt am: Vorlesungsverantwortlicher Seminarverantwortlicher

27.4.2016 Conf.Dr.Christian Sacarea Conf.Dr.Christian Sacarea

Genehmigt im Department am: Departmentdirektor

Univ.Prof.Dr. Andreica Anca