SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Numerical Calculus							
2.2 Course coordinator Assoc. Prof. Teodora Catinas							
2.3 Seminar coordinator				Assoc. Prof. Teodora Catinas			
2.4. Year of	3	2.5	6	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2 lab
				seminar/laboratory	
3.4 Total hours in the curriculum	48	Of which: 3.5 course	24	3.6	24
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					7
Evaluations					20
Other activities:				-	
0.5.5		55			

3.7 Total individual study hours	77
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	•	
4.2. competencies	 Knowledge of main notions and procedures of numerical analysis the ability to work with them. Programming skills in MATLA 	
	for implementing numerical algorithms.	

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab activities	 Laboratory with computers.

6. Specific competencies acquired

Professional competencies	 Cl.1 Description of specific programming paradigms and language mechanisms, as well as the identification of the differences between the semantic and syntactic aspects. C3.3 Utilization of informatical and mathematical models and instruments for solving specific problems from the aplicability domain.
Transversal competencies	CT3. Utilization of some efficient methods and techniques of learning, information, research and development of capacities of exploitation of knowledge, of adaptation to the requirements of a dynamical society and communication in Romanian and English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Be able to understand and use basic concepts of Numerical Analysis Be able to implement numerical algorithms in order to solve practical problems.
7.2 Specific objective of the discipline	 Acquire theoretical and practical knowledge about the basic numerical algorithms regarding approximation of functions, numerical integration of functions, numerical solving of linear/nonlinear systems of equations and differential equations. Ability to apply numerical algorithms to solve practical and real life problems.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introductive notions. Finite and divided	Exposure: description,	
differences (definitions and properties). Taylor	explanation, examples.	
formula.		
2. Lagrange interpolation: interpolation	Exposure: description,	
polynomial, interpolation formula, study of the	explanation, examples,	
error.	proofs.	
3. Lagrange interpolation: Aitken's algorithm and	Exposure: description,	
Newton's formula.	explanation, examples.	
4. Hermite interpolation: interpolation	Exposure: description,	
polynomial, interpolation formula, study of the	explanation, examples,	
error. Hermite interpolation with double nodes.	proofs.	
5. Birkhoff interpolation: interpolation	Exposure: description,	
polynomial, interpolation formula, study of the	explanation, examples,	
error. Least square approximation.	proofs.	
6. Numerical differentiation and integration	Exposure: description,	
(introductive notions). Newton-Cotes	explanation, examples,	
quadrature formulas. Repeated quadrature	proofs, dialogue.	
formulas.		
7. General quadrature formulas. Romberg's	Exposure: description,	
algorithm. Adaptive quadratures formulas.	explanation, examples.	
Gauss type quadrature formulas.		
8. Numerical methods for solving linear systems -	Exposure: description,	
direct methods (Gauss, Gauss-Jordan, LU-	explanation, examples.	

methods). Conditioning of a linear system.		
9. Numerical methods for solving linear systems -	Exposure: description,	
iterative methods (Jacobi, Gauss-Seidel, SOR).	explanation, examples.	
10. Methods for solving nonlinear equations in R:	Exposure: description,	
one-step methods (Newton (tangent) method)	explanation, examples.	
and multi-step methods (secant, bisection and		
false position methods).		
11. Methods for solving nonlinear equations in R:	Exposure: description,	
Lagrange, Hermite and Birkhoff inverse	explanation, examples,	
interpolation. Methods for solving nonlinear	proofs.	
systems: successive approximation and		
Newton methods.		
12. Numerical methods for solving differential	Exposure: description,	
equations: Taylor interpolation, Euler and	explanation, examples.	
Runge-Kutta methods.		

Bibliography

- **1.** O. Agratini, I. Chiorean, Gh. Coman, R.T. Trîmbitaş, *Analiză Numerică şi Teoria Aproximării*, vol. III, Ed. Presa Univ. Clujeană, 2002;
- 2. R. L. Burden, J. D. Faires, Numerical Analysis, PWS Publishing Company, 1985.
- 3. I. Chiorean, T. Cătinaș, R. Trîmbitaș, *Analiză numerică*, Ed. Presa Univ. Clujeană, 2010.
- **4.** Gh. Coman, T. Cătinaș, și alții, *Interpolation operators*, Ed. Casa Cărții de Știință, Cluj-Napoca, 2004.
- **5.** Gh. Coman, I. Chiorean, T. Cătinaș, *Numerical Analysis. An Advanced Course*, Ed. Presa Univ. Clujeană, 2007.
- **6.** W. Gander, M.J. Gander, F. Kwok, *Scientific Computing*, Springer Internat. Publishing, 2014.
- 7. R. Plato, Concise Numerical Mathematics, Amer. Math. Soc., 2003.
- **8.** D.D. Stancu, Gh. Coman, O. Agratini, R. Trimbitas, *Analiză Numerică și Teoria Aproximării*, vol. I, Ed. Presa Univ. Clujeană, 2001;
- **9.** D.D. Stancu, Gh. Coman, P. Blaga, *Analiză Numerică și Teoria Aproximării*, vol. II, Ed. Presa Univ. Clujeană, 2002;

10. R. Trîmbitaş, *Numerical Analysis*, Ed. Presa Univ. Clujeană, 2007.

8.2 Laboratory	Teaching methods	Remarks
Introductory examples and problems in Matlab.	Explanation, dialogue.	
 Problems with orthogonal polynomials and Taylor polynomials. Computation of finite and divided differences. 	Explanation, dialogue, examples.	
3. Lagrange interpolation. Computation of Lagrange polynomial using barycentric formula.	Explanation, dialogue, practical examples.	
4. Applied problems to Lagrange interpolation using Aitken's algorithm and Newton's method.	Explanation, dialogue, practical examples. Evaluation.	
5. Applied problems to Hermite interpolation.	Explanation, dialogue, practical examples. Evaluation.	
Applied problems to least square approximation.	Explanation, dialogue, practical examples. Evaluation.	
7. Problems with simple and repeated integration formulas and with Romberg's algorithm.	Explanation, dialogue, practical examples.	
8. Applied problems to Gauss type quadrature formulas and adaptive quadratures.	Explanation, dialogue, examples. Evaluation.	
 Solving linear systems using direct methods. Study of perturbations of a linear system. 	Explanation, dialogue, examples.	

10. Solving linear systems using iterative methods.	Explanation, dialogue,
	examples. Evaluation.
11. Solving nonlinear equations using Newton,	Explanation, dialogue,
secant and bisection methods.	practical examples.
Solving nonlinear systems using Newton	Evaluation.
method.	
12. Solving some differential equations using	Explanation, dialogue,
Euler and Runge-Kutta methods. Ending of	practical examples.
evaluation for laboratories	Evaluation.
evaluation for laboratories	Evaluation.

Bibliography

- 1 R. L. Burden, J. D. Faires, *Numerical Analysis*, PWS Publishing Company, 1985.
- 2 A. Kharab, R. B. Guenther, *An introduction to numerical methods. A Matlab approach*, Taylor&Francis Group, 2006.
- 3 R. Trîmbitaş, *Numerical Analysis*, Ed. Presa Univ. Clujeană, 2007.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course is important for seeing the application of mathematical knowledge in solving practical and real life problems.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	know the basic principles of Numerical Analysis;apply the course conceptsproblem solving	Written exam	70%
10.5 Seminar/lab activities	 be able to implement course concepts and algorithms apply techniques for different practical problems 	Evaluation and continuous observations during the semester.	30%
10.6 Minimum performance	e standards		
At least grade 5 (from the first section)	om a scale of 1 to 10) at both	written exam and laboratory v	vork.

Date Signature of course coordinator Signature of seminar coordinator

12.04.2016

Date of approval Signature of the head of department