1. Information regarding the programme

1.1 Higher education institution	Babes-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Computer Science

2. Information regarding the discipline

2.1 Name of the discipline			Algebra				
2.2 Course c	din	ator	Prof.PhD. Septimiu Crivei				
2.3 Seminar coordinator				Prof.PhD. Septimiu Crivei			
2.4. Year of study	1	$\begin{array}{\|l\|} \hline 2.5 \\ \text { Semester } \end{array}$	1	2.6. Type of evaluation	VP	2.7 Type of discipline	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					28
Additional documentation (in libraries, on electronic platforms, field documentation)					14
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					10
Evaluations					14
Other activities:					0
3.7 Total individual study hours		94			
3.8 Total hours per semester		150			
3.9 Number of ECTS credits		6			

4. Prerequisites (if necessary)

4.1. curriculum	\bullet
4.2. competencies	\bullet

5. Conditions (if necessary)

5.1. for the course	\bullet
5.2. for the seminar /lab activities	\bullet

6. Specific competencies acquired

テ. . - C3.1 Description of concepts, theories and models used in the application field

- C4.3 Identification of adequate models and methods for solving real problems
- CT2 Efficient fulfillment of organized activities in an inter-disciplinary group and development of empathic abilities of inter-personal communication, relationship and collaboration with various groups

7. Objectives of the discipline (outcome of the acquired competencies)
7.1 General objective of the discipline
7.2 Specific objective of the discipline

- To introduce the basic notions of linear algebra as well as some of its applications to computer science
- To present some applications of linear algebra to computer science

8. Content

8.1 Course	Teaching methods	Remarks
1. Functions. Equivalence relations and partitions	interactive exposure, explanation, didactical demonstration	
2. Binary operations. Groups, subgroups, group homomorphisms	interactive exposure, explanation, didactical demonstration	
3. Rings and fields, subrings and subfields, ring homomorphisms	interactive exposure, explanation, didactical demonstration	
4. Vector spaces, examples. Subspaces. Linear maps	interactive exposure, explanation, didactical demonstration	
5. Linear dependence and independence. Bases, dimension. Steinitz theorem	interactive exposure, explanation, didactical demonstration	
6. Bases and coordinates. Dimension related formulas	interactive exposure, explanation, didactical demonstration	
7. Elementary operations. Matrices and determinants	interactive exposure, explanation, didactical demonstration	
8. Rank and inverse of a matrix. Matrix of a list of	interactive exposure, explanation, didactical demonstration	
9. Matrix of a linear map. Change of basis	interactive exposure, explanation, didactical demonstration	
10. Systems of linear equations, solving methods 11. Eigenvectors and eigenvalues interactive exposure, explanation, didactical demonstration		
12. Bilinear and quadratic forms. Reduction of quadratic		
forms to the canonical form	interactive exposure, explanation, didactical demonstration	interactive exposure, explanation, didactical demonstration

1. G. Calugareanu, Lectii de algebra liniara, Lito UBB, Cluj-Napoca, 1995.
2. S. Crivei, Basic abstract algebra, Casa Cartii de Stiinta, Cluj-Napoca, 2002, 2003.
3. C. Gherghe, D. Popescu, Criptografie. Coduri. Algoritmi, Editura Univ. Bucuresti, 2005.
4. J. Gilbert, L. Gilbert, Elements of modern algebra, PWS-Kent, Boston, 1992.
5. W.J. Gilbert, W.K. Nicholson, Modern algebra with applications, John Wiley, 2004.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Functions. Equivalence relations and partitions	interactive exposure, conversation	
2. Binary operations. Groups, subgroups, group homomorphisms	interactive exposure, conversation	
3. Rings and fields, subrings and subfields, ring homomorphisms	interactive exposure, conversation	
4. Vector spaces, examples. Subspaces. Linear maps	interactive exposure, conversation	
5. Linear dependence and independence. Bases, dimension. Steinitz theorem	interactive exposure, conversation	
6. Bases and coordinates. Dimension related formulas	interactive exposure, conversation	
7. Elementary operations. Matrices and determinants	interactive exposure, conversation	
8. Rank and inverse of a matrix. Matrix of a list of vectors	interactive exposure, conversation	
9. Matrix of a linear map. Change of basis	interactive exposure, conversation	
10. Systems of linear equations, solving methods	interactive exposure, conversation	
11. Eigenvectors and eigenvalues	interactive exposure, conversation	
12. Bilinear and quadratic forms. Reduction of quadratic forms to the canonical form	interactive exposure, conversation	
13. Linear codes, examples. Generator matrix and paritycheck matrix	interactive exposure, conversation	
14. Decoding linear codes	interactive exposure, conversation	
Bibliography 1. N. Both, S. Crivei, Culegere de probleme de algebra, Lito UB 2. S. Crivei, Basic abstract algebra, Casa Cartii de Stiinta, Cluj 3. I. Purdea, C. Pelea, Probleme de algebra, Editura EIKON,	BB Cluj-Napoca, 1996. -Napoca, 2002, 2003. luj-Napoca, 2008.	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The contents is directed towards applications of linear algebra to computer science.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (\%)
10.4 Course	Knowledge of basic concepts, examples	Exam	25
10.5 Seminar/lab	Problem solving	Test, exam, assessments	75
10.6 Minimum performance standards			
$>$ Grade 5			

Date	Signature of course coordinator	Signature of seminar coordinator
30.04.2016	Prof.PhD. Septimiu CRIVEI	Prof.PhD. Septimiu CRIVEI
Date of approval	Signature of the head of department	

Prof.PhD. Octavian AGRATINI

