SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Component-Based Programming
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Software design							
2.2 Course coordinator Prof.PhD. Bazil Parv							
2.3 Seminar coordinator Prof.PhD. Bazil Parv							
2.4. Year of	1	2.5	2	2.6. Type of	Е	2.7 Type of	compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					Hours
Learning using manual, course support, bibliography, course notes				30	
Additional documentation (in libraries, on electronic platforms, field documentation)				30	
Preparation for seminars/labs, homework, papers, portfolios and essays				70	
Tutorship				14	
Evaluations				14	
Other activities:				-	
		1 = 0			

3.7 Total individual study hours	158
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	 Fundamentals of programming
	Object-oriented programming
	 Programming paradigms
4.2. competencies	Average programming skills

5. Conditions (if necessary)

5.1. for the course	Videoprojector, Internet access
5.2. for the seminar /lab	Computers, Internet access, UML tool
activities	

6. Specific competencies acquired

Professional competencies '	 Understanding of the software design from the engineering perspective; Understanding of the software design concepts and principles Understanding of the software design process and its activities; Proficient use of tools and languages specific to software systems development Knowing the specifics of main architectural and design patterns and how to apply them to specific projects.
Transversal	 Professional communication skills; concise and precise description, both oral and written, of professional results, Independent and team work capabilities; able to fulfill different roles Antepreneurial skills;

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Know and understand fundamental concepts of software design. Be able to apply the appropriate architectural and design patterns to different programming projects
7.2 Specific objective of the discipline	 At the end of the course, students know the main concepts and principles of software design have a good understanding of the following terms: software architecture definition(s), architectural styles and models, architecture definition language(s); detailed design; design pattern, construction design; learn the importance of architectural and detailed design and how to use tools for these tasks; know several software system types (taken from real-world applications) and the best recommended architectural styles and design patterns.

8. Content

8.1 Course	Teaching methods	Remarks
Introduction to software engineering design. Motivation and general design concepts. Overview of the software engineering design	Interactive exposureExplanationConversationDidactical demonstration	
2. Software design fundamentals. UML Fundamentals.	Interactive exposureExplanationConversationDidactical demonstration	
3. Software design fundamentals. UML structural modeling. UML behavioral modeling	Interactive exposureExplanationConversationDidactical demonstration	
 4. Fundamentals of software architecture. Fundamentals of requirements engineering. Designing the software architecture 	Interactive exposureExplanationConversationDidactical demonstration	
5. Architectural styles and patterns. Overview and history of styles and patterns. Data-centered and data-flow systems	Interactive exposureExplanationConversationDidactical demonstration	
6. Architectural styles and patterns. Distributed systems. Interactive and hierarchical systems	Interactive exposureExplanation	

	Conversation
	Didactical demonstration
7. <i>Detailed design</i> . Overview of the detailed design.	Interactive exposure
Structural and behavioral design of components.	Explanation
Design principles	Conversation
Design principles	Didactical demonstration
8. Creational design patterns in the detailed design.	Interactive exposure
Abstract Factory. Factory Method	Explanation
12000.0001.0001911.200100	Conversation
	Didactical demonstration
9. Creational design patterns in the detailed design.	Interactive exposure
Builder. Prototype. Singleton.	Explanation
β	Conversation
	Didactical demonstration
10. Structural design patterns in the detailed design.	Interactive exposure
Adapter. Composite. Façade	• Explanation
1 1 3	Conversation
	Didactical demonstration
11. Behavioral design patterns in the detailed design.	Interactive exposure
Iterator. Observer.	• Explanation
	Conversation
	Didactical demonstration
12. Construction design. Flow-, state-, and table-based	Interactive exposure
construction design. Programming design language,	• Explanation
styles, and quality evolution.	• Conversation
	Didactical demonstration
13. Software design management. Design management	Interactive exposure
framework. Planning	Conversation
14. Software design management. Implementation and	Interactive exposure
termination. Final review	Conversation
	Controllation

Bibliography

- 1. OTERO, C.E.: *Software Engineering Design*, CRC Press, 2012. site: http://softwareengineeringdesign.com/Default.htm
- 2. BASS, L., CLEMENTS, P., KAZMAN R.: *Software Architecture in Practice*, 2nd ed., Addison-Wesley, 2003
- 3. KRUCHTEN, PH.: *Architectural Blueprints The 4+1 View Model of Software Architecture*, IEEE Software 12 (6), 1995, pp. 42-50.
- 4. SHAW, M.: *The Coming-of-Age of Software Architecture Research*, in Proc. of the 23rd ICSE, IEEE Comp. Soc. 2001, 656, [http://www.cs.cmu.edu/afs/cs.cmu.edu/project/vit/ ftp/pdf/shaw-keynote-rev.pdf]
- **5.** SHAW, M., GARLAN, D.: *Software Architecture: Perspectives on an Emerging Discipline*, Prentice-Hall, 1996.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Administrivia	Conversation, debate, case	Seminar is
	studies, presentations	organized as a
		total of 14 hours
		– 2 hours every
		other week
2. Establishing the target application. First miniproject	Conversation, debate, case	
started	studies, examples	
3. Work on miniproject 1	Exposure, debate, case	
	studies, examples	
4. Miniproject 1 due. Second miniproject started	Exposure, debate, case	
	studies, examples	
5. Work on miniproject 2	Exposure, debate, case	
	studies, examples	
6. Miniproject 2 due. Detailed design issues	Exposure, debate, case	

	studies, examples	
7. Final review and project evaluation	Exposure, live demos	

Bibliography

Students will serch and use software design documentation

- on the department server (win/labor/Romana/master/SED)
- on the web, using main CS databases

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course follows the IEEE and ACM Curriculla Recommendations for Software Engineering studies;
- Courses with similar content are taught in the major universities in Romania offering similar study programs;
- Course content is considered very important by the software companies for improving average software development skills

10. Evaluation

10. Evaluation				
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the	
			grade (%)	
10.4 Course	 knowing the basic concepts of software design applying different architectural styles and design patterns to different problem domains 	Written exam	40%	
10.5 Seminar/lab activities	review literature regarding software design • be able to solve a problem using different architectural and design patterns • be able to evaluate a software design	 Miniproject 1 work Miniproject 2 work Seminar/lab attendance Default 	20% 20% 10%	
10.6 Minimum performance standards				
 At least grade 5 (from a scale of 1 to 10) at written exam and miniproject work. 				

Date	Signature of course coordinator	Signature of seminar coordinator
April 30, 2015	Prof.PhD. Bazil PARV	Prof.PhD. Bazil PARV
Date of approval		Signature of the head of department
		Prof.PhD. Bazil PARV