SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Component Based Programming
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Software Quality							
2.2 Course coordinator Assoc.Prof.PhD. Simona Motogna							
2.3 Seminar coordinator				Assoc.Prof.PhD. S	imon	a Motogna	
2.4. Year of	1	2.5	2	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					14
Evaluations					14
Other activities:					-
3.7 Total individual study hours		158			1

3.7 Total individual study hours	158
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	• None
4.2. competencies	 Basic software development skills

5. Conditions (if necessary)

5.1. for the course	• None
5.2. for the seminar /lab	• Computers
activities	

6. Specific competencies acquired

Professional competencies		Proficient use of verification, validation, and evaluation criteria and methods to his/her own software solutions, ability to formulate value judgements and to justify/explain constructive decisions Use advanced skills to develop and conduct complex software projects, of practical and/or research nature, using a wide range of quantitative and qualitative methods Advanced communication skills within different professional environments, appropriate use of computer science vocabulary, good English knowledge
	•	Demonstrate advanced modeling skills for economic, industrial, scientific phenomena and processes, by using fundamental mathematical, statistical, and computer science knowledge
Transversal competencies		Team work capabilities; able to fulfill different roles Professional communication skills; concise and precisedescription, both oral and written, of professional results, Antepreneurial skills;

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Know and understand fundamental concepts of software quality. To be able to apply basic methods for software analysis and software quality assurance.
7.2 Specific objective of the	At the end of the course, students
discipline	
	will acquire theoretical aspects regarding software quality,
	will be able to define a software quality assurance plan and
	will be able to apply quality assurance techniques.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction; characteristics, facts and statistics	Exposure, description,	
	explanation, debate	
	and dialogue,	
	discussion of case	
	studies	
2. Testing, inspection, walkthrough	explanation, debate	
	and dialogue,	
	discussion of case	
	studies	
3. Software quality assurance and SQ Models	Exposure, description,	
	explanation	
4. SQ factors – reliability	Exposure, description,	
	explanation	
5. SQ factors – integrity, security, safety	Exposure, description,	
	explanation	
6. SQ factors – efficiency, maintainability,	Exposure, description,	
flexibility	explanation	

7 00 f4	E	
7. SQ factors – portability, reusability,	Exposure, description,	
interoperability	explanation,	
	discussion of case	
	studies	
8. SQ metrics and tools	Exposure, description,	
	explanation,	
	discussion of case	
	studies	
9. SQ standards	Exposure, description,	
	explanation,	
	discussion of case	
	studies	
10. SQ standards – cont.	Exposure, description,	
2312 (2311111111111111111111111111111111	explanation,	
	discussion of case	
	studies	
11. CMMI	Exposure, description,	
11. CMM	explanation,	
	discussion of case	
	studies	
12 50 2222222222222222222222222222222222		
12. SQ assurance vs. SQ control	Exposure, description,	
	explanation,	
	discussion of case	
	studies	
13. SQ and software development phases	Exposure, description,	
	explanation,	
	discussion of case	
	studies	
14. Reserved topic		Usualy dedicated to an
		invited guest from a
		software company
Diblio anombre		<u> </u>

Bibliography

- 1. D. Galin Software quality assurance From theory to implementation, Addison Wesley, 2003
- 2. S.H. Kan Metrics and models in Software Quality Engineering. Addison Wesley, 2nd ed., 2003
- 3. R.A. Khan, K. Mustafe, S.I. Ahson Software Quality: Concepts and Practice, Alpha Science, 2006
- 4. G. Schulmeyer Handbook of Software Quality Assurance, Artech House, 2007
- D. Spinellis. *Code Quality: The Open Source Perspective*. Addison Wesley, 2006
 S. McConnell Code Complete, 2nd Edition, Microsoft Press, 2004

8.2 Seminar / laboratory	Teaching methods	Remarks
Establish project theme	Conversation, debate,	Seminar is organized as a
	case studies	total of 7 hours – 2 hours
		every second week
2. Establish SQ factors (internal) to be followed	Conversation, debate,	
and associated metrics	case studies, examples	
3. Discuss results and refine metrics	Conversation, debate,	
	case studies	
4. Project presentation	Evaluation	
5. Establish theme project	Conversation, debate,	
	case studies	
6. Establish SQ factors (external) to be followed	Conversation, debate,	
and associated metrics	case studies, examples	
7. Project presentation	Evaluation	
Bibliography		

Students will serch and use SQ tools suitable for their project

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

•	The course respects the IEEE and ACM Curriculla Recommendations for Software	Engineering
	studies;	

- The course exists at the major universities in Romania offering similar study programs;
- The content of the course is considered by the software companies as important for average software development skills and quality assurance skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the	
			grade (%)	
10.4 Course	- know the basic principle of	Written exam	50%	
	the domain;			
	- apply the course concepts			
	- problem solving			
10.5 Seminar/lab activities	- be able to implement	-Practical examination		
	course concepts	-documentation		
	- use tools for different SQ	-portofolio		
	aspects	-continous observations		
	- evaluate quality factors for	Laboratory assignments	20%	
	an application	Project	30%	
10.6 Minimum performance standards				
At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.				

Date	Signature of course coordinator		Signature of seminar coordinator
	Assoc.Prof.PhD. Simona MOTOGNA	A	Assoc.Prof.PhD. Simona MOTOGNA
Date of appro	val	Signa	ature of the head of department