SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme / Qualification	Component-based programming

2. Information regarding the discipline

2.1 Name of the discipline			Optimization models				
2.2 Course coordinator			Assoc. Prof. Nicolae Popovici, Ph.D.				
2.3 Seminar coordinator			Assoc. Prof. Nicolae Popovici, Ph.D.				
2.4. Year of study 1 2.5 Semester		1	1 2.6. Type of Exam 2.7 Type of Co		Compulsory		
			evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar	1	
3.4 Total hours in the curriculum	42 Of which: 3.5 course 28		3.6 seminar	14		
Time allotment:						
Learning using manual, course support, bibliography, course notes						
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays						
Tutorship					7	
Evaluations					35	
Other activities:					-	

3.7 Total individual study hours	133
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical foundations of decision-making process
	Mathematical Analysis
	Dynamical Systems
4.2. competencies	Basic knowledge of linear optimization, convex analysis, differential
	calculus, and dynamical systems

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

Professional	competencies	•	Ability to understand and manipulate advanced concepts and results in the field of optimization theory. Ability to use mathematical methods and implementable algorithms for solving optimization problems.
Transversal	competencies	•	Ability to model and analyze from a mathematical point of view practical optimization processes from other sciences, economics and engineering.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	The aim of this course is to present classical as well as modern optimization models, from both theoretical and practical points of view
7.2 Specific objective of the	Students should acquire knowledge about:
discipline	Integer programming
	Multicriteria optimization
	Transportation problems.
	 Nonlinear optimization models; numerical methods for solving unconstrained or constrained optimization problems (gradient methods, penalty and barrier functions methods).
	 Dynamic programming models; applications to economics and network-type problems.
	Optimization models via calculus of variations.

8. Content

8.1 Course	Teaching methods	Remarks
Classical models of optimization	Direct instruction,	
	mathematical proof,	
	exemplification	
2. Special instances of linear optimization; integer	Direct instruction,	
programming; the Gomory algorithm	mathematical proof,	
	exemplification	
3. Multicriteria linear optimization; the weighted-	Direct instruction,	
sum scalarization method	mathematical proof,	
	exemplification	
4. Bicriteria linear optimization; the parametric	Direct instruction,	
scalarization method	mathematical proof,	
	exemplification	
5. Transportation problems; statement of the	Direct instruction,	
problem and existence of solutions	mathematical proof,	
	exemplification	
6. Graphs associated to a transportation problem	Direct instruction,	
	mathematical proof,	
	exemplification	
7. Numerical solution of transportation problems	Direct instruction,	
	mathematical proof,	
	exemplification	

8. Nonlinear optimization problems; optimality	Direct instruction,
conditions	mathematical proof,
	exemplification
9. Gradient methods for solving unconstrained	Direct instruction,
optimization problems	mathematical proof,
	exemplification
10. The penalty function method for solving	Direct instruction,
constrained optimization problems	mathematical proof,
	exemplification
11. The barrier function method for solving	Direct instruction,
constrained optimization problems	mathematical proof,
	exemplification
12. Dynamic optimization models; the Bellman's	Direct instruction,
principle of dynamic optimization and	mathematical proof,
applications to economics and network-type	exemplification
problems.	
13. Optimization models via calculus of variations:	Direct instruction,
preliminary results concerning integrals	mathematical proof,
depending on parameters; the fundamental	exemplification
Lemma in variational calculus	
14. The fundamental problem of the calculus of	Direct instruction,
variations; the Euler equation and some of its	mathematical proof,
special cases; applications.	exemplification

Bibliography

- 1. BOYD, S., VANDENBERGHE, L.: Convex Optimization, Cambridge University Press, 2004.
- 2. BRECKNER, W.W.: Cercetare operațională, Universitatea "Babeș-Bolyai", Facultatea de Matematică, Cluj-Napoca, 1981.
- 3. CHIANG, A.C.: Elements of Dynamic Optimization. McGraw-Hill, New York, 1992.
- 4. EHRGOT, M.: Multicriteria Optimization. Springer, Berlin Heidelberg New York, 2005.
- 5. MARUŞCIAC, I.: Programare matematică, Universitatea Babeş-Bolyai, Cluj-Napoca, 1975.
- 6. POPOVICI, N.: Optimizare vectorială, Casa Carții de Știință, Cluj-Napoca, 2005.
- 7. VANDERBEI, R.: Linear Programming. Foundations and Extensions, Springer, New York, 2008.

8.2 Seminar	Teaching methods	Remarks
Mathematical modeling of different real-life	Direct instruction, case	
optimization problems	studies, debate	
2. Integer optimization problems solved by the	Problem-based	
Gomory algorithm	instruction, debate	
3. Multicriteria optimization problems solved by	Problem-based	
the weighted-sum scalarization method	instruction, debate	
4. Bicriteria linear optimization problems solved	Problem-based	
by the parametric scalarization method	instruction, debate	
5. Theoretical exercises concerning transportation	Direct instruction,	
problems	exemplification,	
	mathematical proofs	
6. Numerical solution of transportation problems	Problem-based	
	instruction, debate,	
	mathematical proofs	
7. Different practical problems which can be	Problem-based	
modelled as transportation problems	instruction, case studies,	
	debate	
8. Nonlinear optimization problems solved by	Problem-based	
using the optimality conditions	instruction, debate	
9. Nonlinear optimization problems solved by the	Problem-based	
gradient method	instruction, debate	
10. Constrained optimization problems solved by	Problem-based	

the penalty function method	instruction, debate
11. Constrained optimization problems solved by	Problem-based
the barrier function method	instruction, debate
12. Economic problems solved by dynamic	Problem-based
optimization, based on Bellman's principle in	instruction, debate
continuous case	
13. Economic problems solved by dynamic	Problem-based
optimization, based on Bellman's principle in	instruction, debate
discrete case	
14. Network-type problems solved by dynamic	Problem-based
optimization	instruction, debate

Bibliography

- 1. ANDERSON, D.R., SWEENEY, D.J., WILLIAMS, T.A., An Introduction to Management Science. Quantitative Approaches to Decision Making, South-Western College Publishing, Cincinnati, 2000.
- 2. BRECKNER, B.E., POPOVICI, N.: Probleme de cercetare operațională, EFES, Cluj-Napoca, 2006.
- 3. BRECKNER, W.W., DUCA, D.: Culegere de probleme de cercetare operationala, Universitatea Babes-Bolyai, Facultatea de Matematica, Cluj-Napoca, 1983.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course ensures a solid theoretical background, according to national and international standards

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	 Knowledge of theoretical concepts and capacity to rigorously prove the main theorems; Ability to solve practical exercises and theoretical problems 	Written exam	70%	
10.5 Seminar/lab activities	- Attendance and active class participation	Continuous evaluation	30%	
10.6 Minimum performance standards				

The grade [as weighted average (70 * Written exam + 30 * Continuous evaluation)/100] should be greater than or equal to 5.

Date	Signature of course coordinator	Signature of seminar coordinator
May 3, 2015	Assoc. Prof. Nicolae Popovici, Ph.D.	Assoc. Prof. Nicolae Popovici, Ph.D.
Date of approval		Signature of the head of department
		Prof. Octavian Agratini, Ph.D.