SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Component-Based Programming
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Programming paradigms							
2.2 Course coordinator Prof.PhD. Bazil Parv							
2.3 Seminar coordinator				Prof.PhD. Bazil Parv			
2.4. Year of	1	2.5	1	2.6. Type of E 2.7 Type of compulsory			
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					Hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					70
Tutorship				14	
Evaluations				14	
Other activities:				-	
					1

3.7 Total individual study hours	158
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	 Fundamentals of Programming
	Object-Oriented Programming
	 Functional and Logic Programming
4.2. competencies	Average programming skills

5. Conditions (if necessary)

5.1. for the course	Videoprojector, Internet access
5.2. for the seminar /lab	Computers, Internet access, UML tool
activities	

6. Specific competencies acquired

Professional competencies '	 Understanding and working with basic concepts in computer programming; Capability of analysis and synthesis; Proficient use of tools and languages specific to software systems development; Knowing the specifics of main programming paradigms.
Transversal competencies	 Professional communication skills; concise and precise description, both oral and written, of professional results; Independent work capabilities; able to fulfill different roles; Antepreneurial skills.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Know and understand fundamental concepts of programming. Be able to apply different programming paradigms to different programming projects
7.2 Specific objective of the discipline	 At the end of the course, students know the main features of different programming paradigms: procedural, object-oriented, functional, logical, component-based, event-based have a good understanding of the following terms: variable, object, data type, component, interface, polymorphism; learn the similarities and differences between component-based programming and object-oriented programming in the frame of inheritance and composition issues; understand the importance of component's scale, granularity, and
	 understand the importance of component's scale, granularity, and architectural aspects;

8. Content

o. Content						
8.1 Course	Teaching methods	Remarks				
Programming paradigms. Definitions. Main programming paradigms. Programming styles	 Interactive exposure Explanation Conversation Didactical demonstration 					
2. Software component definition. Basic terms: software component, object, module, interface, software reuse. Standardization issues	 Interactive exposure Explanation Conversation Didactical demonstration 					
3. <i>Components, interfaces, and re-entrance</i> . Different interface types for components. The constituents of a contract	 Interactive exposure Explanation Conversation Didactical demonstration 					
4. <i>Components, interfaces, and re-entrance</i> . The client-server relation in procedural-, object-, and component-based systems.	 Interactive exposure Explanation Conversation Didactical demonstration 					
5. <i>Polymorphism</i> . The data type concept in a programming language context. Type extensibility and independent extensibility of software components	 Interactive exposure Explanation Conversation Didactical demonstration 					
6. <i>Polymorphism</i> . Safety issues in component-based systems. Interfaces and contract evolution	 Interactive exposure Explanation Conversation					

	Didactical demonstration
7. Reuse mechanisms: inheritance and object composition. Kinds of inheritance. Using inheritance: advantages and pitfalls	 Interactive exposure Explanation Conversation Didactical demonstration
8. Reuse mechanisms: inheritance and object composition. Interface inheritance. Delegation, composition, inheritance, and polymorphism	 Interactive exposure Explanation Conversation Didactical demonstration
9. Architectural issues in component-based systems. Reusing components. Classifying components with respect to their reuse	 Interactive exposure Explanation Conversation Didactical demonstration
10. Architectural issues in component-based systems. Design patterns. Frameworks. Software architecture in component-based systems	 Interactive exposure Explanation Conversation Didactical demonstration
11. Programming styles in a component world. Connexion-oriented programming. Events and messages	 Interactive exposure Explanation Conversation Didactical demonstration
12. Programming styles in a component world. Dispatch interfaces and metaprogramming. Scripting	 Interactive exposure Explanation Conversation Didactical demonstration
13. Wiring models for software components. General features of a wiring model. OMG CORBA, OMA	Interactive exposureConversation
14. Wiring models for software components. Sun Java: JavaBeans, Enterprise Java Beans. Microsoft: COM, ActiveX, COM+, .NET. Final review	Interactive exposureConversation

Bibliography

- 1. D'SOUZA, DESMOND FRANCIS WILLS, ALAN CAMERON: Objects, Components, and Frameworks with UML: The Catalysis Approach, Addison-Wesley, 1999.
- 2. SZYPERSKI, CLEMENS: Component Software. Beyond Object-Oriented Programming, Addison-Wesley (1st ed. 1998, 2nd ed. 2002).
- 3. STROUSTRUP, BJARNE The C++ Programming Language Special Edition, Addison-Wesley, 2000 chapter 2
- **4.** VAN ROY, PETER; HARIDI, SEIF Concepts, Techniques and Models of Computer Programming, MIT Press, 2004

5. WEGNER, PETER; Concepts and paradigms of OOP, OOPSLA '89 Keynote talk

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Establishing the paper title	Conversation, debate, case	Seminar is
	studies, presentations	organized as a
		total of 14 hours
		- 2 hours every
		other week
2. Establish the project title	Conversation, debate, case	
	studies, examples	
3. Paper presentations & project progress reports	Exposure, debate, case	
	studies, examples	
4. Paper presentation & project progress reports	Exposure, debate, case	
	studies, examples	
5. Paper presentations & project progress reports	Exposure, debate, case	
	studies, examples	
6. Paper presentations & project progress reports	Exposure, debate, case	
	studies, examples	
7. Project presentation	Exposure, live demos	

Bibliography

Students will serch and use programming paradigms documentation

- on the department server (win/labor/Romana/master/PP)
- on the web, using main CS databases

The ELISA project http://jklunder.home.xs4all.nl

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course follows the IEEE and ACM Curriculla Recommendations for Software Engineering studies;
- Courses with similar content are taught in the major universities in Romania offering similar study programs;
- Course content is considered very important by the software companies for improving average software development skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course	 knowing the basic concepts of programming applying different paradigms to different problem domains 	Written exam	40%		
10.5 Seminar/lab activities	review literature regarding programming paradigms • be able to solve a problem using different paradigms	Paper workProject workSeminar/lab attendanceDefault	20% 20% 10%		
10.6 Minimum performance standards					
• At least grade 5 (from a scale of 1 to 10) at written exam, paper and project work.					

Date	Signature of course coordinator	Signature of seminar coordinator
April 30, 2015	Prof.PhD. Bazil PARV	Prof.PhD. Bazil PARV
Date of approval		Signature of the head of department
		Prof.PhD. Bazil PARV