SYLLABUS

1.1 Higher education	Babeş-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Spatial Databases							
2.2 Course coordinator				Lecturer PhD. TRÎMBIȚAȘ Maria-Gabriela			
2.3 Seminar coordinator				Lecturer PhD. TRÎMBIŢAŞ Maria-Gabriela			
2.4. Year of	2	2.5	3	2.6. Type of	С	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 lab
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bił	oliography, course notes	5		14
Additional documentation (in libraries, on electronic platforms, field documentation)					6
Preparation for seminars/labs, homework, papers, portfolios and essays					18
Tutorship					6
Evaluations					14
Other activities:					-
3.7 Total individual study hours		58			
3.8 Total hours per semester 100					

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Databases	
	Data Structures and Algorithms	
4.2. competencies	Ability to create databases	

4

5. Conditions (if necessary)

5.1. for the course	Lecture room with video projector
5.2. for the seminar /lab	• Laboratory with computers with MS SQL Server (minimum 2008)
activities	installed

6. Specific competencies acquired

	1	
		C3.1 Description of concepts, theories and models used in the application domain
sional tencies		C3.3 Use of mathematical and computer science models and tools for solving problems in the application domain
Profes ompe	compe	C3.4 Data and models analysis
	0	C3.5 Development of computer components for interdisciplinary projects
	S	CT1 Apply rules to: organized and efficient work, responsibilities of didactical and scientific
sversal etencies		professional ethics
		CT3 Use of effective methods and techniques of learning, information, research and
ran	omp	development of the capacity to exploit knowledge, to adapt to the requirements of a dynamic society and communication in Romanian language and in a foreign language
	C	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To initiate the students into spatial database problems and concepts To induce practical skills for working with spatial databases and data structures
7.2 Specific objective of the discipline	 To understand the concept of spatial databases Learn about the components of SDBMS To understand the concept of a query language; improve the skills in using a standard query language (SQL) Learn to use spatial ADTs with SQL Learn to use OGIS spatial ADTs with SQL

8. Content

8.1 Course		Teaching methods	Remarks
1. What is a Sp	atial Database System (SDBMS)?	• Interactive exposure	
Terms, Defin	itions	Explanation	
Modeling Spa	atial Data in Traditional DBMS	Conversation	
		Didactical	
		demonstration	
2. Spatial Data	Types and Traditional Databases	• Interactive exposure	
Spatial Data	Types and Post-relational Databases	Explanation	
How is a SD	BMS different from a GIS ?	Conversation	
Components	of a SDBMS	Didactical	
		demonstration	
3. Three Layer	Architecture	• Interactive exposure	
Spatial Taxor	nomy	Explanation	
Data Models		Conversation	
		Didactical	
		demonstration	

 4. Spatial Concepts and Data Models What is a Data Model? Types of Data Models Models of Spatial Information 5. Field based Model 	 Interactive exposure Explanation Conversation Didactical demonstration Interactive exposure
Types of Field Operations Object Model	 Explanation Conversation Didactical demonstration
 Classifying Spatial objects Spatial Object Types in OGIS Data Model Classifying Operations on spatial objects in Object Model Topological Relationships 	 Interactive exposure Explanation Conversation Didactical demonstration
7. Three-Step Database Design Extending ER with Spatial Concepts Conceptual Data Modeling with UML Comparing UML Class Diagrams to ER Diagrams	 Interactive exposure Explanation Conversation Didactical demonstration
8. Spatial Query Languages Standard Database Query Languages Relational Algebra Basic SQL Primer	 Interactive exposure Explanation Conversation Didactical demonstration
9. Query Processing, Query Optimization	 Interactive exposure Explanation Conversation Didactical demonstration
10. Extending SQL for Spatial Data Example Queries that emphasize spatial aspects Trends: Object-Relational SQL	 Interactive exposure Explanation Conversation Didactical demonstration
11. Spatial Storage and Indexing Storage: Disk and Files Organizing spatial data with space filling curves Grid Files R-tree family	 Interactive exposure Explanation Conversation Didactical demonstration
12. Spatial Indexing: Search Data-Structures	 Interactive exposure Explanation Conversation Didactical demonstration
13. Trends in Spatial Databases	Interactive exposureConversation
14. Graded paper in Spatial Databases	• Written test

Bibliography

- 1. SHASHI SHEKHAR, SANJAY CHAWLA, Spatial Databases: A Tour, Prentice Hall, 2003 (ISBN 013-017480-7)
- 2.MANFRED M. FISCHER, PETER NIJKAMP Geographic Information Systems, Spatial Modeling and Policy Evaluation, Springer-Verlag GmbH (1993)
- 3. EMMANUEL STEFANAKIS Geographic Databases and GIS 2008, Hardcover., ISBN: 978-3-540-22491-4
- GABRIEL M KUPER, LEONID LIBKIN, JAN PAREDAENS (Editors) Constraint Databases. Springer 2000, ISBN 3-540-66151-4
- 5. Applications of Spatial Data Structures: Computer Graphics, Image Processing and GIS (Addison-Wesley series in computer science) (Hardcover), 1989

8.2 Seminar /	laboratory	Teaching methods	Remarks
I.	Getting Started With Microsoft SQL Server 2008 Spatial	Explanation, dialogue, case studies	The laboratory is structured as 2 hours classes every second week
II.	Spatial Data types in Microsoft SQL Server 2008: Geometry and Geography	Explanation, dialogue, case studies	
III.	Design of a Spatial DB	Explanation, dialogue, case studies	
IV.	Implementation of SDB	Explanation, dialogue, case studies	
V.	Querying a SDB I	Explanation, dialogue, case studies	
VI.	Querying a SDB II	Explanation, dialogue, case studies	
VII.	Presentation of the personal project		

Bibliography

SERGE ABITEBOUL , RICHARD HULL , VICTOR VIANU Foundations of Databases Addison-Wesley, 1995

MARK DE BERG, OTFRIED CHEONG, MARC VAN KREVELD, MARK OVERMARS, Computational Geometry: Algorithms and Applications Springer, Berlin, 2008.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of major universities in Europe and abroad;

[•] The content of the course is concordant with partial competencies for possible occupations from the Grid 1 - RNCIS

10. Evaluation

Type of activity	Evaluation criteria	Evaluation methods	Share in the grade (9)
Course	 know the basic principle of the domain; apply the course concepts problem solving 	Written test	50%
	 be able to design and implement a spatial database apply techniques for different classes of real world problems 	Continuous observations Practical project	50%
Minimum performance sta	ndards		
• The final grade (average of 1 to 10)	e between written exam and lab	poratory work) should be at leas	t grade 5 (from a scale

Date	Signature of course coordinator	Signature of seminar coordinator
8.05.2015	Lect. PhD. Maria-Gabriela Trîmbiţaş	Lect. PhD. Maria-Gabriela Trîmbiţaş

Date of approval

Signature of the head of department

Prof. Dr. Bazil Pârv