LEHRVERANSTALTUNGSBESCHREIBUNG

1. Angaben zum Programm

1.1 Hochschuleinrichtung	Babes-Bolyai Universität, Cluj-Napoca
1.2 Fakultät	Mathematik und Informatik
1.3 Department	Informatik
1.4 Fachgebiet	Informatik
1.5 Studienform	Bachelor
1.6 Studiengang /	Informatik
Qualifikation	

2. Angaben zum Studienfach

2.1 LV-Bezeichnung ALGEBRAISCHE GRUNDLAGEN DER INFORMATIK							
2.2 Lehrverantwortlicher – Vorlesung Lect. Dr. George Ciprian Modoi							
2.3 Lehrverantwortlicher – Seminar			ar	Asist. Dr. Nechit	a Veronica		
2.4 Studienjahr	1	2.5	1	2.6. Kolloquium 2.7 Art der Verpflichten			
		Semester		Prüfungsform		LV	

3. Geschätzter Workload in Stunden

3.1 SWS	5	von denen: 3.2	3	3.3 Seminar/Übung	2
		Vorlesung			
3.4 Gesamte Stundenanzahl im	70	von denen: 3.5	42	3.6 Seminar/Übung	28
Lehrplan		Vorlesung			
Verteilung der Studienzeit:					
Studium nach Handbücher, Kursbuch, Bibliographie und Mitschriften					
Zusätzliche Vorbereitung in der Bibliothek, auf elektronischen Fachplattformen und durch					15
Feldforschung					
Vorbereitung von Seminaren/Übungen, Präsentationen, Referate, Portfolios und Essays					25
Tutorien					14
Prüfungen					6
Andere Tätigkeiten:					20

3.7 Gesamtstundenanzahl Selbststudium	80
3.8 Gesamtstundenanzahl / Semester	150
3.9 Leistungspunkte	6

4. Voraussetzungen (falls zutreffend)

4.1 curricular	• Entfällt
4.2 kompetenzbezogen	• Entfällt

5. Bedingungen (falls zutreffend)

5.1 zur Durchführung der	Vorlesungsraum, Beamer, Laptop		
Vorlesung			
5.2 zur Durchführung des	Seminarraum		
Seminars / der Übung			

6. Spezifische erworbene Kompetenzen

Berufliche Kompetenzen	 Wissen, Verstehen und Anwenden der Grundbegriffe : Grundlegende algebraische Strukturen (Gruppe, Ring, Körper, Vektorraum) Algorithmen zur Berechnung der Lösungen eines Systems, der Koordinaten eines Vektors in verschiedenen Basen, Rang einer Matrix (Gauss-Jordan, Substitutionslemma, usw.) Diagonalisieren von lineare Abbildungen Zusammenhänge zwischen der Algebra und der Kodierungstheorie
Transversale Kompetenzen	 Praktische Anwendungen der theoretischen mathematischen Kenntnisse Eigenstudium Anwendungen der spezifischen mathematischen Begriffe in verschiedenen Bereiche

7. Ziele (entsprechend der erworbenen Kompetenzen)

7.1 Allgemeine Ziele der Lehrveranstaltung	Kenntnis der grundlegenden algebraischen Strukturen und deren Eigenschaften, sowie deren Anwendung in das algorithmische Lösen konkreter Probleme
7.2 Spezifische Ziele der Lehrveranstaltung	 Studium der Funktionen und deren Anwendungen Gruppe, Ring und Körper Vektorraum, Teilraum, Basis, lineare Abbildung Lineare Codes und Anwendungen

8. Inhalt

8.1 Vorlesung	Lehr- und Lernmethode	Anmerkungen
1. Funktionen und Eigenschaften der	Darstellung der Thematik, Diskussion	
Funktionen		
2. Aquivalenzen und Partitionen	Vortrag, Beweis, Diskussion	
3. Operationen. Gruppen, Untergruppen,	Vortrag, Beweis, Diskussion	
Morphismen	voidag, Beweis, Biskussion	
Worphishen		
4. Ringe und Körper, Unterringe und	Vortrag, Beweis, Diskussion	
Unterkörper, Morphismen		
5. Vektorräume, Beispiele. Teilraum. Lineare	Vortrag, Beweis, Diskussion	
Abbildungen		

6. Lineare Abhängigkeit und Unabhängigkeit, Basis, Dimension. Theorem von Steinitz	Vortrag, Beweis, Diskussion
7. Basen und koordinaten Systeme. Dimensionsformeln	Vortrag, Diskussion
8. Der Rang und die Inverse einer Matrix. Vektorenlisten.	Vortrag, Beweis, Diskussion
9. Die Matrix einer linearen Abbildung. Basiswechsel.	Vortrag, Diskussion
10. Lineare Gleichungssysteme.	Vortrag, Beweis, Diskussion
11. Eigenvektoren und Eigenwerte. Diagonalisierung eines Endomorphismen eines Vektorraumes.	Vortrag, Diskussion
12. Bilineare und quadratische Formen.	Vortrag, Diskussion
13. Lineare Codes, Beispiele. Paritätsmatrix.	Vortrag, Diskussion
14. Codierung. Methoden.	Vortrag, Beweis, Diskussion
Litaratur	

Literatur

- 1. G. SCHEJA, U. STORCH: Lehrbuch der Algebra 1,2, B.G. Teubner, Stuttgart 1994.
- 2. M. ARTIN: Algebra, Birkhauser, Basel 1998.
- 3. ALTEN HEINZ-WILHELM, 4000 Jahre Algebra, Springer, Heildelberg, Berlin, New York, 2005.
- 4. FISCHER GERD, Lineare Algebra, Vieweg Studium, Braunschweig, 1997.
- 5. HEBISCH UDO, Halbringe, algebraische Theorie und Anwendungen in der Informatik, Teubner, Stuttgart, 1993.
- 6. IHRINGER THOMAS, Allgemeine Algebra, Teubner, Stuttgart, 1998.
- 7. KOECHER MAX, Lineare Algebra und analytische Geometrie, Springer, Berlin, Heidelberg, New York, 1997.
- 8. KOWALSKY, HANS JOACHIM, Lineare Algebra, deGruyter, Berlin, NewYork, 1995.
- 9. Both, N., Crivei, S., Culegere de probleme de algebra, Lito UBB Cluj-Napoca, 1996.
- 10. Breaz, S., Coconet, T., Contiu C. Lectii de Algebra, Ed. Eikon, Cluj-Napoca, 2010.
- 11. Covaci, R., Algebra si programare liniara, Lito UBB, Cluj-Napoca, 1986.
- 12. Crivei, S., Basic abstract algebra, Casa Cartii de Stiinta, Cluj-Napoca, 2002, 2003.
- 13. Gheorghe, C., Popescu, D., Criptografie. Coduri. Algoritmi, Editura Univ. Bucuresti, 2005.
- 14. Purdea, I, Pop, I., Algebra, Editura Gil, 2007.

9. Verbindung der Inhalte mit den Erwartungen der Wissensgemeinschaft, der Berufsverbände und der für den Fachbereich repräsentativen Arbeitgeber

Diese Vorlesung wird an international bekannten Universitäten im Fachgebiet Informatik angeboten.

Die Vorlesung beschreibt die algebraischen Grundlagen der Informatik sowie deren Anwendungen in der

Praxis.		

10. Prüfungsform

Veranstaltungsart	10.1 Evaluationskriterien	10.2	10.3 Anteil an der
		Evaluationsmethoden	Gesamtnote
10.4 Vorlesung	Grundkenntnisse der in der	schriftliche	25%
	Vorlesung beschriebenen	Abschlussarbeit	
	Ergebnisse (mit Beweis)		
	Definitionen, Beispiele,		25%
	Gegenbeispiele		
10.5 Seminar / Übung	Anwesenheit, aktive Mitarbeit,	Schriftliche	25%
	richtiges Lösen der	Abschlussarbeit	
	Hausaufgaben		
			25%
		Kontrollarbeit	2570
10 () () 1 1 1			

10.6 Minimale Leistungsstandards

Für das Bestehen der Prüfung muss die Mindestnote 5 erzielt werden sowie mindestens 4 für jede Teilaufgabe.

Ausgefüllt am: Vorlesungsverantwortlicher Seminarverantwortlicher

13.04.2015 Lect.Dr. Ciprian George Modoi Lect.Dr. Ciprian George Modoi

Genehmigt im Department am: Departmentdirektor

13.04.2015 Univ. Prof. Dr. Bazil Parv