SYLLABUS

1. Information regarding the programme				
1.1 Higher education institution	Babeş-Bolyai University of Cluj-Napoca			
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Master			
1.6 Study programme / Qualification	High Performance Computing and Big Data Analytics			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Functional Parallel Programming for Big Data Analytics				
2.2 Course coordinator	Prof. Dr. Frédéric Loulergue/ Lect. Dr. Horea Grebla			
2.3 Seminar coordinator	Prof. Dr. Frédéric Loulergue			
2.4. Year of stud 1 .5 Semester1	2.6. Type of evaluation E 2.7 Type of Compulsory discipline			

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per we	eek	3	Of which: 3.2 course	2	3.3 seminar/laboratory	1 sem
3.4 Total hours in	n the curriculum	42	Of which: 3.5 course	28	3.6 seminar/laboratory	14
Time allotment:						
Learning using n	nanual, course support	t, bib	liography, course notes	5		35
Additional docur	nentation (in libraries	, on e	electronic platforms, fi	eld do	cumentation)	45
Preparation for s	eminars/labs, homewo	ork, p	papers, portfolios and e	ssays		47
Tutorship						15
Evaluations						16
Other activities:						-
3.7 Total	158					
individual study						
hours						
3.8 Total hours	200					
per semester						
3.9 Number of	8					
ECTS credits						

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	•	Students will attend the course with their mobile phones shut down
5.2. for the seminar /lab	•	Students will attend the seminar with their mobile phones shut down

activities		Room with computers as needed; high level programming language
		environment

6. Specific competencies acquired

tencies	•	Understanding the concepts, methods and models used in MapReduce and other cloud computing frameworks
compe	•	Understanding the principles, design and implementation of various analysis in a cloud computing environment
onal	•	Learning to conduct incipient original research in programming for cloud computing
tencies	•	The ability to apply the MapReduce model to scalable data analytics in solving real world problems.
npe	•	Responsible execution of lab assignments, research and practical reports.
	•	Application of efficient and rigorous working rules.
ersal	•	Manifest responsible attitudes toward the scientific and didactic fields.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To introduce the student to MapReduce and other cloud computing frameworks for data analytics
7.2 Specific objective of the discipline	 To present the field of as a novel research and application domain. To induce the necessity of scalable data analysis methods by studying some relevant practical applications To offer the student the instruments that will allow him/her to develop different cloud computing applications for data analytics.

8. Content

8.1 Course	Teaching methods	Remarks
Part One - Introduction		
Introduction to Big Data, Four Vs of Big Data		
Big Data - technical landscape, industry landscape		
Search, Indexing and MemoryEfficient storage of big data		
Scalable querying and reporting on massive data sets;		
Scalable and distributed hardware and software architecture	25	
Part Two - NoSQL Systems		
The differences between traditional relational databases	and NoSQL	
databases		
MapReduce, Column-store, Graph, Document-store		
Big Data using a NoSQL approach: Use cases and best pro	actices to	
process Big Data with NoSQL		
Database workloads and technologies; how to select dat	abase	
technology		
Part Three - Analytics		

Introduction to Big Data Analytics Introduction to R language Using R for Analysis of the Data; Visualization with R Big Data algorithms Analytics examples

- An Introduction to Programming in Scala
- High-Order Functional Programming in Scala
- The MapReduce model
- Programming MapReduce Applications with Hadoop and Scala
- Applications of MapReduce: Clustering
- Optimisation of MapReduce Applications
- In Memory MapReduce
- MapReduce for Parallel SQL Queries Evaluation
- Formal Methods and MapReduce Development

Bibliography

1. Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima, second edition, 2010.

2. Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Pro- cessing on Large Clusters. In OSDI, pages 137–150. USENIX Association, 2004. http://static.usenix.org/events/osdi04/tech/full

- papers/dean/dean.pdf
- Tom White. Hadoop The Definitive Guide. O'Reilly, second edition, 2010.

4. Makoto Onizuka, Hiroyuki Kato, Soichiro Hidaka, Keisuke Nakano, and Zhenjiang Hu. Optimization for iterative queries on mapreduce. PVLDB, 7 (4):241–252, 2013.

5. Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael J. Franklin, Scott Shenker, and Ion Stoica. Shark: fast data analysis using coarse-grained distributed memory. In SIGMOD, pages 689–692, New York, NY, USA, 2012. ACM. Doi:10.1145/2213836.2213934.

6. M. Al Hajj Hassan and M. Bamha. Semi-join computation on distributed file systems using the mapreduce-merge model. In ACM SAC, pages 406–413, New York, NY, USA, 2010. ACM. Doi:10.1145/1774088.1774174.

7. Mohamad Al Hajj Hassan, Mostafa Bamha, and Frédéric Loulergue. Handling Data-skew Effects in Join Operations using MapReduce. In ICCS. Elsevier, 2014, to appear

8. Kento Emoto, Sebastian Fischer, and Zhenjiang Hu. Filter-embedding semir- ing fusion for programming with MapReduce. Formal Asp. Comput., 24(4-6): 623–645, 2012. doi:10.1007/s00165-012-0241-8.

9. Kento Emoto, Frédéric Loulergue, and Julien Tesson. A Verified Generate- Test-Aggregate Coq Library for Parallel Programs Extraction. 2014, to appear

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Administration. Survey of the sources of information available on Internet and Intranet. Chosing the paper	Interactive exposureExplanation	
topics and scheduling the presentations.	• Conversation	
2. Delivery of theoretical report	Interactive exposure	
	• Explanation	
	Conversation	
3. Delivery of theoretical report	• Interactive exposure	
	 Explanation 	
	Conversation	

4. Delivery of experimental report	Interactive exposure	
	Explanation	
	Conversation	
5. Delivery of experimental report	Interactive exposure	
	• Explanation	
	Conversation	
6. Delivery of software project	Interactive exposure	
	• Explanation	
	Conversation	
7. Delivery of software project	Interactive exposure	
	• Explanation	
	Conversation	

Bibliography

 Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Ar- tima, second edition, 2010.
 Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Pro- cessing on Large Clusters. In OSDI, pages 137–150. USENIX Association, 2004. http://static.usenix.org/events/osdi04/tech/full

papers/dean/dean.pdf

3. Tom White. Hadoop – The Definitive Guide. O'Reilly, second edition, 2010.

4. Makoto Onizuka, Hiroyuki Kato, Soichiro Hidaka, Keisuke Nakano, and Zhenjiang Hu. Optimization for iterative queries on mapreduce. PVLDB, 7 (4):241–252, 2013.

5. Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael J. Franklin, Scott Shenker, and Ion Stoica. Shark: fast data analysis using coarse-grained distributed memory. In SIGMOD, pages 689–692, New York, NY, USA, 2012. ACM. Doi:10.1145/2213836.2213934.

6. M. Al Hajj Hassan and M. Bamha. Semi-join computation on distributed file systems using the mapreduce-merge model. In ACM SAC, pages 406–413, New York, NY, USA, 2010. ACM. Doi:10.1145/1774088.1774174.

7. Mohamad Al Hajj Hassan, Mostafa Bamha, and Frédéric Loulergue. Handling Data-skew Effects in Join Operations using MapReduce. In ICCS. Elsevier, 2014.

8. Kento Emoto, Sebastian Fischer, and Zhenjiang Hu. Filter-embedding semir- ing fusion for programming with MapReduce. Formal Asp. Comput., 24(4-6): 623–645, 2012. doi:10.1007/s00165-012-0241-8.

9. Kento Emoto, Frédéric Loulergue, and Julien Tesson. A Verified Generate- Test-Aggregate Coq Library for Parallel Programs Extraction. 2014, to appear

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

About Google's MapReduce and Hadoop, the content is similar to content found in some disciplines around the world. The approach of using a functional language is original and motivated by the fact that by essence the MapReduce framework is functional. Other content about the optimisation of MapReduce programs, the algorithms and implementations techniques for SQL queries evaluation with MapReduce and formal methods for MapReduce are original are related to state-of-the-art research results in this area, all of them being of real practical interest.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	• The correctness and	Written exam (in the regular	30%
	completeness of the	session)	
	accumulated knowledge.		

	•	A theoretical research report on an agent based topic, based on some recent research papers should be prepared and presented	Evaluation of the research report (a written paper of about 10 pages and an oral presentation)	20%
10.5 Seminar/lab activities	•	Class attendance	Grade awarded pro rata	10%
	•	A theoretical research report on an agent based topic, based on some recent research papers should be prepared and presented	Evaluation of the research report (a written paper of about 10 pages and an oral presentation)	20%
	•	A personal software project fully implemented, without using only existing a MapReduce environment.	Evaluation of the project (software implementation, documentation and demonstration)	20%

10.6 Minimum performance standards

• Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the MapReduce domain, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.

- Penalty points are awarded for delays in submission of proposed topic choices and submission of final reports.
- Successful passing of the exam is conditioned by the final grade that has to be at least 5; the written exam grade has to be at least 5.

Date	Signature of course coordinator	Signature of seminar coordinator
06.03.2014	Prof. Dr. Frédéric Loulergue	Prof. Dr. Frédéric Loulergue
Date of approval		Signature of the head of department
		Prof. dr. Bazil Pârv