SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	High Performance Computing and Big Data Analytics
Qualification	

2. Information regarding the discipline

2.1 Name of the	dis	scipline	Fo	Formal Models of Concurrency					
2.2 Course coordinator Lect. PhD. Sterca Adrian									
2.3 Seminar coo	ordi	nator	Lect. PhD. Sterca Adrian						
2.4. Year of	1	2.5	1	2.6. Type of E 2.7 Type of Compulsory					
study		Semester		evaluation					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					40
Preparation for seminars/labs, homework, papers, portfolios and essays					40
Tutorship					28
Evaluations				20	
Other activities:				0	
3.7 Total individual study hours		158			
2.0 T-4-11		175			

3.7 Total individual study hours	158
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Distributed operating systems, Concurrent and distributed
	programming
4.2. competencies	Concurrent and distributed programming

5. Conditions (if necessary)

5.1. for the course	Class room with a video projector device
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

Professional competencies '	 formal models for concurrent processes concurrent programming paradigms
Transversal	 ability to model and analyze concurrent processes ability to evaluate the performance of a concurrent system

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	The course offers a strong theoretical approach in modelling concurrent and distributed systems
7.2 Specific objective of the discipline	The course presents several formalisms for describing concurrent processes

8. Content

8.1 Course	Teaching methods	Remarks
1. Serialization, concurrency and parallelism	Exposure:description,	
	explanation, examples,	
	discussion of case studies	
2. Concurrent programming paradigms: shared	Exposure:description,	
memory, message passing, transactional memory	explanation, examples,	
	discussion of case studies	
3. Concurrency control – serializability criteria	Exposure:description,	
	explanation, examples,	
	discussion of case studies	
4. Concurrency control algorithms	Exposure:description,	
	explanation,examples,	
	discussion of case studies	
5. Process algebra I	Exposure:description,	
	explanation, examples,	
	discussion of case studies	
6. Process algebra II	Exposure:description,	
	explanation, examples,	
	discussion of case studies	
7. CCS - Calculus of Communicating Systems	Exposure:description,	
	explanation,examples,	

	discussion of case studies
8. CCS (part 2)	Exposure:description, explanation,examples, discussion of case studies
9. CCS (part 3)	Exposure:description, explanation,examples, discussion of case studies
10. CCS (part 4)	Exposure:description, explanation,examples, discussion of case studies
11. Pi-calculus	Exposure:description, explanation,examples, discussion of case studies
12. Other formalisms: CSP – Communicating Sequential Processes, the Actor model, PEPA	Exposure:description, explanation,examples, discussion of case studies
13. Other formalisms: CSP – Communicating Sequential Processes, the Actor model, PEPA	Exposure:description, explanation,examples, discussion of case studies
14. Current research trends in formal modelling of concurrency	Exposure:description, explanation,examples, discussion of case studies

Bibliography

- 1. Robin Milner, *Communication and Concurrency*, Prentice Hall, International Series in Computer Science, ISBN 0-13-115007-3. 1989
- 2. Reichel H. Formal Models of Concurrency, http://www.informatik.uni-bremen.de/~lschrode/teaching/Systems/ReichelCCS.pdf, 2003.
- 3. C. A. R. Hoare, Communicating Sequential Processing, 2004, http://www.usingcsp.com/cspbook.pdf
- 4. Weikum G., Vossen G., Transactional Information System: Theory, Algorithms, and Practice of Concurrency Control and Recovery. Kaufmann Morgan Publ. 2002.

8.2 Seminar / laboratory	Teaching methods	Remarks		
1. Discussions related to the project or report's subject	Dialog, debate, case			
	studies, examples			
2. Discussions related to the project or report's subject	Dialog, debate, case			
	studies, examples			
3. Discussions related to the project or report's subject	Dialog, debate, case			
	studies, examples			
4. Report presentations	Dialog, debate, case			
	studies, examples			
5. Report presentations	Dialog, debate, case			
	studies, examples			
6. Project presentations	Dialog, debate, case			
	studies, examples			
7. Project presentations	Dialog, debate, case			
	studies, examples			
Bibliography: recent articles from ACM Digital Library and IEEE Xplore				

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course	Knowing the formalisms for describing concurrency presented during the course	Examination	30 %		
10.5 Seminar/lab activities	Ability to understand	Project	40 %		
	recent research and relate it to theoretical concepts presented at the course	Research report	30 %		
10.6 Minimum performance standards					

In order to successfully pass this course, students must get at least 5 at each of the 3 examination tasks.

Date	Signature of course coordinator	Signature of seminar coordinator
	Lect.PhD. Adrian Sterca	Lect.PhD. Adrian Sterca
Date of approval	Signature of the head of department	
	Prof PhD Razil Pary	