SYLLABUS

1.1 Higher education	Babeş Bolyai University				
institution					
1.2 Faculty	Faculty of Mathematics and Computer Science				
1.3 Department	Department of Computer Science				
1.4 Field of study	Computer Science				
1.5 Study cycle	Master				
1.6 Study programme /	High Performance Computing and Big Data Analytics				
Qualification					

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Programming paradigms							
2.2 Course coor	Course coordinator Prof.PhD. Bazil Parv						
2.3 Seminar coordinator Prof.PhD. Bazil Parv							
2.4. Year of	1	2.5	1	2.6. Type of	Е	2.7 Type of	compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3	3.2 course	2	3.3	1
					seminar/laboratory	
3.4 Total hours in the curriculum	4	Of which: 3	3.5 course	28	3.6	14
	2				seminar/laboratory	
Time allotment:						hours
Learning using manual, course support, bibliography, course notes					30	
Additional documentation (in libraries, on electronic platforms, field documentation)					30	
Preparation for seminars/labs, homework, papers, portfolios and essays					70	
Tutorship					14	
Evaluations					14	
Other activities:					-	
3.7 Total individual study hours		158				

5.7 Total mar radar study nouis	100
3.8 Total hours per semester	200
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Fundamentals of Programming
	Object-Oriented Programming
	Functional and Logic Programming
4.2. competencies	Average programming skills

5. Conditions (if necessary)

5.1. for the course	• Videoprojector
5.2. for the seminar /lab	• Computers
activities	

6. Specific competencies acquired

Professional competencies	 Understanding and working with basic concepts in computer programming; Capability of analysis and synthesis; Proficient use of tools and languages specific to software systems development Knowing the specifics of main programming paradigms.
Transversal competencies	 Professional communication skills; concise and precise description, both oral and written, of professional results, Independent work capabilities; able to fulfill different roles Antepreneurial skills;

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Know and understand fundamental concepts of programming. Be able to apply different programming paradigms to different programming projects
7.2 Specific objective of the discipline	At the end of the course, students
	 know the main features of different programming paradigms: procedural, object-oriented, functional, logical, component-based, event-based have a good understanding of the following terms: variable, object, data type, component, interface, polymorphism; learn the similarities and differences between component-based programming and object-oriented programming in the frame of inheritance and composition issues; understand the importance of component's scale, granularity, and architectural aspects;

8. Content		
8.1 Course	Teaching methods	Remarks
1. Programming paradigms. Definitions. Main	Exposure, description,	
programming paradigms. Programming styles	explanation, debate	
	and dialogue,	
	discussion of case	
	studies	
2. Software component definition. Basic terms:	explanation, debate	

software component, object, module, interface, software reuse. Standardization issues	and dialogue, discussion of case studies
 Components, interfaces, and re-entrance. Different interface types for components. The constituents of a contract 	Exposure, description, explanation
 Components, interfaces, and re-entrance. The client-server relation in procedural-, object-, and component-based systems. Components and distributed systems 	Exposure, description, explanation
 Polymorphism. The data type concept in a programming language context. Type extensibility and independent extensibility of software components 	Exposure, description, explanation
6. Polymorphism. Safety issues in component- based systems. Interfaces and contract evolution	Exposure, description, explanation
 Reuse mechanisms: inheritance and object composition. Kinds of inheritance. Using inheritance: advantages and pitfalls 	Exposure, description, explanation, discussion of case studies
8. Reuse mechanisms: inheritance and object composition. Interface inheritance. Delegation, composition, inheritance, and polymorphism	Exposure, description, explanation, discussion of case studies
9. Architectural issues in component-based systems. Reusing components. Classifying components with respect to their reuse	Exposure, description, explanation, discussion of case studies
10. Architectural issues in component-based systems. Design patterns. Frameworks. Software architecture in component-based systems	Exposure, description, explanation, discussion of case studies
11. Programming styles in a component world. Connexion-oriented programming. Events and messages	Exposure, description, explanation, discussion of case studies
 Programming styles in a component world. Dispatch interfaces and metaprogramming. Scripting 	Exposure, description, explanation, discussion of case studies
 Wiring models for software components. General features of a wiring model. OMG CORBA, OMA 	Exposure, description, explanation, discussion of case studies
 14. Wiring models for software components. Sun Java: JavaBeans, Enterprise Java Beans. Microsoft: COM, ActiveX, COM+, .NET. Final review 	Exposure, description, explanation, discussion of case studies
Bibliography 1. D'SOUZA, DESMOND FRANCIS - WILLS, A	LAN CAMERON: Objects, Components, and

Frameworks with UML : The Catalysis Approach, Addison-Wesley, 1999.

- 2. SZYPERSKI, CLEMENS: Component Software. Beyond Object-Oriented Programming, Addison-Wesley (1st ed. 1998, 2nd ed. 2002).
- 3. STROUSTRUP, BJARNE The C++ Programming Language Special Edition, Addison-Wesley, 2000 chapter 2
- 4. VAN ROY, PETER; HARIDI, SEIF Concepts, Techniques and Models of Computer Programming, MIT Press, 2004
- 5. WEGNER, PETER; Concepts and paradigms of OOP, OOPSLA '89 Keynote talk

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Establish paper title	Conversation, debate,	Seminar is organized as a
	case studies	total of 7 hours -2 hours
		every other week
2. Establish project title	Conversation, debate,	
	case studies, examples	
3. Paper presentations & project progress reports	Exposure, debate, case	
	studies, examples	
4. Paper presentation & project progress reports	Exposure, debate, case	
	studies, examples	
5. Paper presentations & project progress reports	Exposure, debate, case	
	studies, examples	
6. Paper presentations & project progress reports	Exposure, debate, case	
	studies, examples	
7. Project presentation	Exposure, live demos	
D'11' 1		

Bibliography

Students will serch and use programming paradigms documentation on the web, using main CS databases

The ELISA project http://jklunder.home.xs4all.nl

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course follows the IEEE and ACM Curriculla Recommendations for Software Engineering studies;
- Courses with similar content are taught in the major universities in Romania offering similar study programs;
- Course content is considered very important by the software companies for improving average software development skills

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	- know the basic concepts of	Written exam	40%
	programming;		
	- apply different		
	programming paradigms to		
	different problem domains		
10.5 Seminar/lab activities	- be able to study and review	-Paper work	20%
	literature regarding	-Project work	20%

	programming paradigms	-Seminar/lab attendance	10%		
	- be able to solve a problem	-Default	10%		
	using different programming				
	paradigms				
10.6 Minimum performance standards					
• At least grade 5 (from a scale of 1 to 10) at written exam, paper and project work.					

DateSignature of course coordinatorSignature of seminar coordinator

October 1, 2012 Prof.PhD. Bazil PARV

Prof.PhD. Bazil PARV

Date of approval

Signature of the head of department

.....

.....