FIŞA DISCIPLINEI

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the	e dis	scipline	Da	tabases			
2.2 Course coordinator Lect. PhD Dan Mircea Suciu							
2.3 Seminar coordinator Lect.			Lect. PhD Dan Mire	cea S	uciu		
2.4. Year of	2	2.5	1	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	1 sem +
				seminar/laboratory	2 lab
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	42
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					25
Tutorship					5
Evaluations					20
Other activities:				-	
3.7 Total individual study hours		80			

3.7 Total individual study hours	80
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Data Structures and Algorithms
4.2. competencies	 Average programming skills in a high level programming
	language

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	• Laboratory with computers with MS SQL Server (minimum 2005)
activities	installed.

6. Specific competencies acquired

	- Knowledge, understanding and use of basic concepts of theoretical Computer Science
Professional competencies	 Ability to work independently and/or in a team in order to solve problems in defined professional contexts. Good database design and programming skills
_	- Ability to create SQL queries to different real life situations
Transversal competencies	- Ability to create databases using SQL statements
ansv	- Improved programming abilities
Tra	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To get acquainted with the general concepts regarding the data bases. To get acquainted with the data models, especially the relational model.
7.2 Specific objective of the discipline	 To be able to create and modify databases in MS SQLServer Ability to manage databases in .Net.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction in Databases	Exposure: description,	
	explanation, examples,	
	discussion of case studies	
2. Relational Databases	Exposure: description,	
	explanation, examples,	
	discussion of case studies	
3. SQL Queries	Exposure: description,	
	explanation, examples, debate,	
	dialogue	
4. Relational Algebra	Exposure: description,	
	explanation, examples,	
	discussion of case studies	
5. Schema Refinement	Exposure: description,	
	explanation, examples,	
	discussion of case studies	
6. Normal Forms	Exposure: description,	
	explanation, examples,	
	discussion of case studies	
7. Entity-Relational Model	Exposure: description,	
	explanation, examples,	
	discussion of case studies	
8. Database design	Exposure: description,	
	explanation, examples,	
	discussion of case studies	
9. Physical structure of DBs	Exposure: description,	

	explanation, examples,
	discussion of case studies
10. Indexes	Exposure: description,
	explanation, examples, debate,
	dialogue
11. Trees	Exposure: description,
	explanation, examples, debate,
	dialogue
12. Hash-Files	Exposure: description,
	explanation, examples, debate,
	dialogue
13. Object-Oriented Databases	Exposure: description,
	explanation, examples, debate,
	dialogue
14. Object-Relational Databases	Exposure: description,
	explanation, examples, debate,
	dialogue

Bibliography

- 1. AHO, A., HOPCROFT, J., ULLMAN, J., Data Structures and Algorithms. Addison-Wesley, Reading, Massachusetts, 1983.
- 2. BÂSCA, O., Baze de date. Editura All, Bucuresti 1997.
- 3. DATE, C.J., An Introduction to Data Base Systems. Addison Wesley, Reading, MA, 2004.

8.2 Seminar	Teaching methods	Remarks
1. CRUD statements in SQL	Dialogue, debate, case	The seminar is structured as 2
	studies, examples, proofs	hours classes every second
		week
2. Data Definition specific statements	Dialogue, debate, case	
in SQL	studies, examples, proofs	
3. ADO.NET library	Dialogue, debate, case	
	studies, examples, proofs	
4. Design databases.	Dialogue, debate, case	
	studies, examples, proofs	
5. Normal forms in practice	Dialogue, debate, case	
	studies, examples, proofs	
6. Advance clauses in SELECT	Dialogue, debate, case	
statements	studies, examples, proofs	
7. SQL optimization	Dialogue, debate, case	
	studies, examples, proofs	

Bibliography

- 1. KORTH, H.F., SILBERSCHATZ, A., Data Base System Concepts. McGraw-Hill Book Compagny, 1986.
- 2. LIVIU NEGRESCU, LAVINIA NEGRESCU, Limbajul C# pentru incepatori. Editura Albastra, Cluj-Napoca 2011.
- 3. RAMAKRISHNAN, R., Database Management Systems. McGraw-Hill, 1998.

8.3 Laboratory	Teaching methods	Remarks
1. + 2. Create a database in MS SQL Server with at	Explanation,	
least 10 tables, and fill 5 of its tables with at least 10	dialogue, case studies	
relevant records		
3. +4. + 5. Design and develop a .NET application	Explanation,	
which maintains the content of a table	dialogue, case studies	
6.+7.+8. High level operations developed in C# for	Explanation,	
maintaining an n-to-m relationship between two	dialogue, case studies	
tables.		

9.+10.+11. Develop 10 complex SQL queries	Explanation,
according with some specific criteria.	dialogue, case studies
12. +13.+14. SQL queries optimization	Testing data
	discussion, evaluation

Bibliography

- 1. KORTH, H.F., SILBERSCHATZ, A., Data Base System Concepts. McGraw-Hill Book Compagny, 1986.
- 2. LIVIU NEGRESCU, LAVINIA NEGRESCU, Limbajul C# pentru incepatori. Editura Albastra, Cluj-Napoca 2011.
- 3. RAMAKRISHNAN, R., Database Management Systems. McGraw-Hill, 1998.
- 4. T. THEMSTROM, A. WEBBER, M. HOTEK, MS SQL Server 2008 Database Development, Self Paced Training Kit 2009

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course structure is according with the IEEE and ACM Recommendations for Computer Science studies;
- The course is part of the studying program of all major universities in Romania and abroad;
- The content of the course is considered by the software companies as mandatory knowledge for a software developer

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	know the basic principleof the domain;apply the courseconcepts	Written exam	50%	
	- problem solving			
10.5 Seminar/lab activities		 Practical examination Continuous observations	50%	
10.6 Minimum performance standards				

The final grade (average between written exam and laboratory work) should be at least grade 5 (from a scale of 1 to 10)

Date	Signature of course coordinator	Signature of seminar coordinator
	Lect. PhD. Dan Mircea Suciu	Lect. PhD. Dan Mircea Suciu
Date of approval	Signature of the head of department	