SYLLABUS

8 8 1	
1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Component-based programming
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	dis	cipline	Ine Petri Nets in Software Modeling and Verification				
2.2 Course coor	din	ator		Lect. Christian Sacarea, PhD			
2.3 Seminar coordinator				Lect. Christian Sacarea, PhD			
2.4. Year of	2	2.5	4	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes 3					30
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					40
Tutorship 20					20
Evaluations				38	
Other activities:				-	
3.7 Total individual study hours		158			

3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

1 ()	
4.1. curriculum	•
4.2. competencies	Programming skills

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired Solid knowledge in component-based software engineering Advanced knowledge of mathematical theories and applications related to decision competencies Professional theory and optimization Advanced knowledge of theoretical, methodological, and practical developments in computer science and software engineering Abilities of using software tools for all software development activities modeling and solving real-world problems • **Transversal competencies** use of computer science's conceptual and methodological apparatus to provide solutions for incompletely defined situations, to solve new theoretical and practical problems advanced knowledge of component-based technologies and languages work in teams, assuming different execution and leading roles, performing professional tasks with autonomy and responsibility

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Abilities to apply and develop advanced information technologies based on suitable formal models, to propose and use such models and theories for automating the design, implementation, and verification of computer-based systems.
7.2 Specific objective of the discipline	 The acquired knowledge and experience will allow the students to actively use Petri nets and the computer-aided tools based on them in modelling, design, verification, and implementation of various classes of systems. Based on the acquired theoretical knowledge, the student is able to transfer approaches of the Petri net theory to the domain of other formal models too.

8. Content				
8.1 Cc	burse	Teaching methods	Remarks	
1.	An introduction to Petri nets, their philosophy and applications, the notion of a net and of the derived basic terms	Exposure: description, explanation, examples, discussion of case studies		
2.	Condition/Event (C/E) Petri nets, cases and steps, the state space of C/E systems, cyclic and live C/E systems, equivalence of C/E systems.	Exposure: description, explanation, examples, discussion of case studies		
3.	Contact-free C/E systems, complementation, case graphs and their application for analysing C/E	Exposure: description, explanation, examples, discussion of case studies		

4. Processes of C/E systems, occurrence nets, properties of properties and composition of processes. Exposure: description, explanation, examples, discussion of case studies 5. Complementation of C/E systems, the synchronic distances, peelal synchronic distances, C/E systems and the propositional calculus, facts. Exposure: description, explanation, examples, discussion of case studies 6. Place/Transition (P/T) Petri nets, their definition, evolution rules, their state space, basic analytical problems (safety, boundedness, conservativeness, liveness). Exposure: description, explanation, examples, discussion of case studies 7. Representing the possibly infinite state space of Petri nets by a reachability tree, computing and using reachability trees for analysing P/T Petri nets. Exposure: description, explanation, examples, discussion of case studies 8. P and Tinvariants of P/T Petri nets, their definition, the ways of computing them and using them for analysing P/T Petri nets. Exposure: description, explanation, examples, discussion of case studies 9. Subclasses and extensions of P/T Petri nets, state machines, marked graphs, free-choice Petri nets, Petri nets with inhibitors, timed and stochastic Petri nets. Exposure: description, explanation, examples, discussion of case studies 10. The notion of a Petri net language, CPN Design as an example of a tool based on CPNs. Exposure: description, explanation, examples, discussion of case studies 12. Analysis of CPNs, occurrence graphs, invariants, and their use in analysing systems. Exposure: description, explanation, examples, discussion of case studies <t< th=""><th></th><th>systems.</th><th></th><th></th></t<>		systems.		
5. Complementation of C/E systems, the synchronic distance, special synchronic distances, C/E systems, and the propositional calculus, facts. Exposure: description, explanation, examples, discussion of case studies 6. Place/Transition (P/T) Petri nets, their definition, evaluation, examples, discussion of case studies Exposure: description, explanation, examples, discussion of case studies 7. Representing the possibly infinite state space of Petri nets by a reachability tree, computing and using reachability trees for analysing P/T Petri nets. Exposure: description, explanation, examples, discussion of case studies 8. P and T invariants of P/T Petri nets, their definition, the ways of computing them and using them for analysing P/T Petri nets. Exposure: description, explanation, examples, discussion of case studies 9. Subclasses and extensions of P/T Petri nets, state machines, marked graphs, free-choice Petri nets, Petri nets with inhibitors, timed and stochastic Petri nets. Exposure: description, explanation, examples, discussion of case studies 10. The notion of a Petri net language, types of such languages, their closure propatility and complexity of some selected Petri net-related problems. Exposure: description, explanation, examples, discussion of case studies 12. Analysis of CPNs, occurrence graphs, invariants, and their use in analysing systems. Exposure: description, explanation, examples, discussion of case studies 13. Hierarchical and object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basoit concented Petri nets. Exposure: description, e	4.	Processes of C/E systems, occurrence nets, properties of properties and composition of processes.	Exposure: description, explanation, examples, discussion of case studies	
 Place/Transition (P/T) Petri nets, their definition, explanation, examples, discussion of case studies Representing the possibly infinite state space of Petri nets by a reachability tree, computing and using reachability trees for analysing P/T Petri nets. P and T invariants of P/T Petri nets, their definition, the ways of computing them and using them for analysing P/T Petri nets. Subclasses and extensions of P/T Petri nets, state machines, marked graphs, free-choice Petri nets, Petri nets with inhibitors, timed and stochastic Petri nets. The notion of a Petri net language, types of such languages, their closure properties, their relation to the Chomsky hierarchy. Computability and complexity of some selected Petri net-related problems. Coloured Petri nets (CPNs), their basic modelling primitives, an inscription language, CPN Design as an example of a tool based on CPNs. Analysis of CPNs, occurrence graphs, invariants, and their use in analysing systems. Hierarchical and object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-ori	5.	Complementation of C/E systems, the synchronic distance, special synchronic distances, C/E systems and the propositional calculus, facts.	Exposure: description, explanation, examples, discussion of case studies	
7. Representing the possibly infinite state space of Petri nets by a reachability tree, computing and using reachability trees for analysing P/T Petri nets. Exposure: description, explanation, examples, discussion of case studies 8. P and T invariants of P/T Petri nets, their definition, the ways of computing them and using them for analysing P/T Petri nets. Exposure: description, explanation, examples, discussion of case studies 9. Subclasses and extensions of P/T Petri nets, petri nets with inhibitors, timed and stochastic Petri nets. Exposure: description, explanation, examples, discussion of case studies 10. The notion of a Petri net language, types of such languages, their closure properties, their relation to the Chomsky hierarchy. Computability and complexity of some selected Petri net-related problems. Exposure: description, explanation, examples, discussion of case studies 11. Coloured Petri nets (CPNs), their basic modelling primitives, an inscription language, CPN Design as an example of a tool based on CPNs. Exposure: description, explanation, examples, discussion of case studies 12. Analysis of CPNs, occurrence graphs, invariants, and their use in analysing systems. Exposure: description, explanation, examples, discussion of case studies 13. Hierarchical and object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concept of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concept of a hierarchical design, substitution and invocation, adding object-orie	6.	Place/Transition (P/T) Petri nets, their definition, evolution rules, their state space, basic analytical problems (safety, boundedness, conservativeness, liveness).	Exposure: description, explanation, examples, discussion of case studies	
8. P and T invariants of P/T Petri nets, their definition, the ways of computing them and using them for analysing P/T Petri nets. Exposure: description, explanation, examples, discussion of case studies 9. Subclasses and extensions of P/T Petri nets, state machines, marked graphs, free-choice Petri nets, Petri nets with inhibitors, timed and stochastic Petri nets. Exposure: description, explanation, examples, discussion of case studies 10. The notion of a Petri net language, types of such languages, their closure properties, their relation to the Chomsky hierarchy. Computability and complexity of some selected Petri net-related problems. Exposure: description, explanation, examples, discussion of case studies 11. Coloured Petri nets (CPNs), their basic modelling primitives, an inscription language, CPN Design as an example of a tool based on CPNs. Exposure: description, explanation, examples, discussion of case studies 12. Analysis of CPNs, occurrence graphs, invariants, and their use in analysing systems. Exposure: description, explanation, examples, discussion of case studies 13. Hierarchical and object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic Exposure: description, examples, discussion of case studies	7.	Representing the possibly infinite state space of Petri nets by a reachability tree, computing and using reachability trees for analysing P/T Petri nets.	Exposure: description, explanation, examples, discussion of case studies	
9. Subclasses and extensions of P/T Petri nets, state machines, marked graphs, free-choice Petri nets, Petri nets with inhibitors, timed and stochastic Petri nets. Exposure: description, explanation, examples, discussion of case studies 10. The notion of a Petri net language, types of such languages, their closure properties, their relation to the Chomsky hierarchy. Computability and complexity of some selected Petri net-related problems. Exposure: description, explanation, examples, discussion of case studies 11. Coloured Petri nets (CPNs), their basic modelling primitives, an inscription language, CPN Design as an example of a tool based on CPNs. Exposure: description, explanation, examples, discussion of case studies 12. Analysis of CPNs, occurrence graphs, invariants, and their use in analysing systems. Exposure: description, explanation, examples, discussion of case studies 13. Hierarchical and object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented features on top of Petri nets, PNtalk as a language based on object-oriented Petri nets. Exposure: description, explanation, examples, discussion of case studies 14. Hierarchical and object-oriented Petri nets. Exposure: description, explanation, examples, discussion of case studies 14. Hierarchical and obj	8.	P and T invariants of P/T Petri nets, their definition, the ways of computing them and using them for analysing P/T Petri nets.	Exposure: description, explanation, examples, discussion of case studies	
10. The notion of a Petri net language, types of such languages, their closure properties, their relation to the Chomsky hierarchy. Computability and complexity of some selected Petri net-related problems. Exposure: description, explanation, examples, discussion of case studies 11. Coloured Petri nets (CPNs), their basic modelling primitives, an inscription language, CPN Design as an example of a tool based on CPNs. Exposure: description, explanation, examples, discussion of case studies 12. Analysis of CPNs, occurrence graphs, invariants, and their use in analysing systems. Exposure: description, explanation, examples, discussion of case studies 13. Hierarchical and object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented features on top of Petri nets, PNtalk as a language based on object-oriented Petri nets. Exposure: description, explanation, examples, discussion of case studies 14. Hierarchical and object-oriented features on top of Petri nets, PNtalk as a language based on object-oriented Petri nets.	9.	Subclasses and extensions of P/T Petri nets, state machines, marked graphs, free-choice Petri nets, Petri nets with inhibitors, timed and stochastic Petri nets.	Exposure: description, explanation, examples, discussion of case studies	
11. Coloured Petri nets (CPNs), their basic modelling primitives, an inscription language, CPN Design as an example of a tool based on CPNs.Exposure: description, explanation, examples, discussion of case studies12. Analysis of CPNs, occurrence graphs, invariants, and their use in analysing systems.Exposure: description, explanation, examples, discussion of case studies13. Hierarchical and object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented features on top of Petri nets, PNtalk as a language based on object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented features on top of Petri nets, PNtalk as a language based on object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented features on top of Petri nets, PNtalk as a language based on object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented features on top of Petri nets, PNtalk as a language based on object-oriented Petri nets.Exposure: description, explanation, examples, discussion of case studies	10.	The notion of a Petri net language, types of such languages, their closure properties, their relation to the Chomsky hierarchy. Computability and complexity of some selected Petri net-related problems.	Exposure: description, explanation, examples, discussion of case studies	
12. Analysis of CPNs, occurrence graphs, invariants, and their use in analysing systems.Exposure: description, explanation, examples, discussion of case studies13. Hierarchical and object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented features on top of Petri nets, PNtalk as a language based on object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented features on top of Petri nets, PNtalk as a language based on oof case studiesExposure: description, explanation, examples, discussion of case studies14. Hierarchical and object-oriented Petri nets, basic concepts of a hierarchical design, substitution and 	11.	Coloured Petri nets (CPNs), their basic modelling primitives, an inscription language, CPN Design as an example of a tool based on CPNs.	Exposure: description, explanation, examples, discussion of case studies	
 13. Hierarchical and object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented features on top of Petri nets, PNtalk as a language based on object-oriented Petri nets. 14. Hierarchical and object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented features on top of Petri nets, PNtalk as a language based on object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented features on top of Petri nets, PNtalk as a language based on object-oriented Petri nets. 	12.	Analysis of CPNs, occurrence graphs, invariants, and their use in analysing systems.	Exposure: description, explanation, examples, discussion of case studies	
14. Hierarchical and object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented features on top of Petri nets, PNtalk as a language based on object-oriented Petri nets.Exposure: description, explanation, examples, discussion of case studies	13.	Hierarchical and object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented features on top of Petri nets, PNtalk as a language based on object-oriented Petri nets.	Exposure: description, explanation, examples, discussion of case studies	
	14.	Hierarchical and object-oriented Petri nets, basic concepts of a hierarchical design, substitution and invocation, adding object-oriented features on top of Petri nets, PNtalk as a language based on object-oriented Petri nets.	Exposure: description, explanation, examples, discussion of case studies	
Bibliography	Biblio	graphy	II	
1 Deisie M/, Detri Note An Introduction Springer Marks 4005 (SDN) 0.207 42722.0	1	Delete Mr. Detri Note An Introduction Continue Mr.		

- 2. Jensen, K.: Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical Use, Springer Verlag, 1993. ISBN: 3-540-60943-1
- 3. Girault, C., Valk, R.: Petri Nets for Systems Engineering: A Guide to Modeling, Verification, and Applications, Springer Verlag, 2002. ISBN 3-540-41217-4
- 4. Desel, J., Reisig, W., Rozenberg, G.: Lectures on Concurrency and Petri Nets, Advances in Petri Nets, Lecture Notes in Computer Science, vol. 3098, Springer Verlag, 2004. ISBN 3-540-22261-8

8.2 Seminar / laboratory	Teaching methods	Remarks		
1. An application of C/E systems.	Dialogue, team work	The seminar is structured		
		as 2 hours classes every		
		second week		
2. An application of P/T Petri nets.	Dialogue, team work			
3. An application of P/T Petri nets.	Dialogue, team work			
4. An application of CPNS.	Dialogue, team work			
5. An application of CPNS.	Dialogue, team work			
6. An application of object-oriented Petri nets.	Dialogue, team work			
7. An application of object-oriented Petri nets.	Dialogue, team work			
Dillisementer				

- Bibliography
- 1. GUY VIDAL-NAQUET, ANNI CHOQUET-GENIET, Reseaux de Petri et Systemes Paralleles, Armond Colin, 1992.
- 2. T. JUCAN, F. L. TIPLEA, Retele Petri, Ed. Univ. "Al.I.Cuza", Iasi, 1995.
- 3. T. JUCAN, F. L. TIPLEA, Retele Petri. Teorie și Practica, Ed. Academiei, 1999.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

Petri Nets are a valuable tool for system organization and modelling of several workflows. Hence, graduating this course will provide skills in order to solve real life problems of certain importance in any large organization.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the			
			grade (%)			
10.4 Course	Fundamental principles	Exam	60%			
	Applying the methods for					
	problem solving					
10.5 Seminar/lab activities Implementing concepts Homework 20%						
and algorithms						
	Innovation, initiative, team Project, Technical report 20%					
work						
10.6 Minimum performance standards						
> The final grade is computed as an weighted average of the individual marks obtained at the above						
activities. The student must obtain at least grade 5 (from a scale of 1 to 10).						

Date	Signature of course coordinator	Signature of seminar coordinator
	Sen. Lect. Christian Sacarea, PhD	Sen. Lect. Christian Sacarea, PhD
Date of approval	Signature of	the head of department
	Prof.	univ. Bazil Parv, PhD