SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme / Qualification	Applied Computational Intelligence

2. Information regarding the discipline

2.1 Name of the discipline Knowledge Discovery in Wide Area Networks							
2.2 Course coordinator Lect. Christian Sacarea, PhD							
2.3 Seminar coordinator				Lect. Christian Sacarea, PhD			
2.4. Year of	1	2.5	1	2.6. Type of	Е	2.7 Type of	compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

•			•		
3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	4	Of which: 3.5	28	3.6	14
	2	course		seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship				20	
Evaluations				23	
Other activities:					
0.7 Tatal !:: al!:::!al.::al.::la.::.la.::a		100			

3.7 Total individual study hours	133
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	 Good skills in understanding, analyzing, modelling real life problems
	Programming skills
	 Social and communication skills

5. Conditions (if necessary)

5.1. for the course	•
---------------------	---

5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

	no competencies acquired
l competenci es	 to offer the main conceptual and computational tools of Artificial Intelligence develop skills for coping with real world problems develop research abilities
Transversal competencie s	 Ability to analyze a large amount of information Ability to communicate with non-experts and to find altogether solutions for real-life problems

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To introduce the student to a broad range of information representation models drawn from the fields of information science, computer science, semiotics, philosophy, cognitive psychology, and artificial intelligence. To introduce a formal method of qualitative data analysis. To provide practical experience with basic data analysis techniques, such as selection, grouping and scaling of features.
7.2 Specific objective of the discipline	 To develop the student's ability to understand the problems involved in the formalization of <i>informal</i> data. To teach practical skills of using the computer software DIAGRAM, ANACONDA, and TOSCANA. To provide practical experience with techniques of structuring graphical representations. To provide insights into the formal structure of classification systems.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction: Data, Information, and	Lectures, presentations,	
Knowledge. What is data? Information?	conversations	
Knowledge? How are they represented?		
Information access and information usage,		
The interdisciplinarity of information		
science.		
Introduction in Knowledge Management.	Lectures, presentations,	
Acquisition, representation and computing	conversations	
of knowledge. Knowledge bases for		
constructions.		
3. Formal Concept Analysis (FCA). The	Lectures, presentations,	
pragmatic approach.	conversations	
4. FCA. Context, concept, diagrams	Lectures, presentations,	
	conversations	

5. Order relations	Lectures, presentations,
	conversations
Many-valued contexts. Scaling	Lectures, presentations,
	conversations
7. Conceptual hierarchies. Diagram. How to	Lectures, presentations,
draw a nice diagram ?	conversations
8. Implications.	Lectures, presentations,
	conversations
Association rules.	Lectures, presentations,
	conversations
10.Conceptual Knowledge Processing.	Lectures, presentations,
	conversations
11. Factor analysis	Lectures, presentations,
,	conversations
12. Ordinal factor analysis	Lectures, presentations,
·	conversations
13. Knowledge Management Systems	Lectures, presentations,
	conversations
14. Conceptual Knowledge Acquisition	Lectures, presentations,
,	conversations

Bibliography

- 1. Bernhard Ganter, Rudolf Wille, Formal Concept Analysis, Springer Verlag, 2000
- 2. Aldo de Moord, Wilfried Lex, Bernhard Ganter, eds., Conceptual Structures for Knowledge Creation and Communication, Springer LNAI 2746, 2003.
- 3. Bernhard Ganter, Aldo de Moord, eds., Using Conceptual Structures, Shaker Verlag, 2003.
- 4. Frank Vogt, Formal Concept Analysis with C++, Springer, 1996

Rokia Missaoui, Jürg Schmid, eds., Formal Concept Analysis, Springer LNAI 3874, 2006.

8.2 Seminar / laboratory	Teaching methods	Remarks
Working with small data sets	projects, exercises, individual	
3	study, homework assignments.	
2. Diagram drawing. What is a nice diagram?	projects, exercises, individual	
	study, homework assignments.	
3. ConExp, Toscana Suite	projects, exercises, individual	
·	study, homework assignments.	
Nested line diagrams	projects, exercises, individual	
	study, homework assignments.	
My first knowledge management system	projects, exercises, individual	
	study, homework assignments.	
6. Mining associations	projects, exercises, individual	
	study, homework assignments.	
7. Attribute exploration	projects, exercises, individual	
	study, homework assignments.	

Bibliography

- 1. B. Ganter, G. Stumme, R. Wille, eds. Formal Concept Analysis: foundations and applications, Springer LNAI 3626, 2005
- 2. P. Becker, J. Hereth Correia: The ToscanaJ Suite for implementing conceptual information systems, in 1, pp. 324 348

- 3. C. Carpineto, G. Romano, Concept data analysis: theory and applications, Wiley, 2004.
- 4. C. Carpineto, G. Romano, Using concept lattices for text retrieval and mining, in 1, pp. 161-179

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• Knowledge discovery is an interdisciplinary area which is broadly needed by all actors from science, economy, industry or research.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	Fundamental principles	Project	50%	
	Applying the methods	-		
	for problem solving			
10.5 Seminar/lab	Implementing concepts		50%	
activities	and algorithms			
	Innovation, initiative,			
	team work			
10.6 Minimum performance standards				
At least grade 5 (from 1 to 10).				

Date coordinator	Signature of course coordinator	Signature of seminar
	Lect. Christian Sacarea, PhD	Lect. Christian Sacarea, PhD
Date of approval	Signature of the head of department	
		Univ. Prof. Bazil Parv. PhD