SYLLABUS

${\bf 1.}\ Information\ regarding\ the\ programme$

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Component-based programming
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Software design							
2.2 Course coordinator Prof.PhD. Bazil Parv							
2.3 Seminar coordinator Prof.PhD. Bazil Parv							
2.4. Year of	1	2.5	2	2.6. Type of	Е	2.7 Type of	compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					65
Tutorship					14
Evaluations				14	
Other activities:				-	

3.7 Total individual study hours	133
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

	• /
4.1. curriculum	Fundamentals of programming
	Object-oriented programming
	 Programming paradigms (optional)
4.2. competencies	Average programming skills

5. Conditions (if necessary)

5.1. for the course	Videoprojector, Internet access
5.2. for the seminar /lab	 Computers, Internet access, UML tool

activities	
------------	--

6. Specific competencies acquired

Professional competencies	 Understanding of the software design from the engineering perspective; Understanding of the software design concepts and principles Understanding of the software design process and its activities; Proficient use of tools and languages specific to software systems development Knowing the specifics of main architectural and design patterns and how to apply them to
F CC	specific projects.
al cies	 Professional communication skills; concise and precise description, both oral and written, of professional results,
vers	 Independent and team work capabilities; able to fulfill different roles Antepreneurial skills;
Transversal competencies	Antepreneuriai skinis,
T	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Know and understand fundamental concepts of software design. Be able to apply the appropriate architectural and design patterns to different programming projects
7.2 Specific objective of the discipline	 At the end of the course, students know the main concepts and principles of software design have a good understanding of the following terms: software architecture definition(s), architectural styles and models, architecture definition language(s); detailed design; design pattern, construction design; learn the importance of architectural and detailed design and how to use tools for these tasks; know several software system types (taken from real-world applications) and the best recommended architectural styles and design patterns;

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Software Engineering Design.	Exposure, description,	
Motivation and general design concepts.	explanation, debate	
Overview of the software engineering design	and dialogue,	
	discussion of case	
	studies	
2. Software design fundamentals. UML	Exposure, description,	
Fundamentals.	explanation	
3. UML structural modeling. UML behavioral	Exposure, description,	
modeling	explanation, case	
	studies	
4. Fundamentals of software architecture.	Exposure, description,	
Fundamentals of requirements engineering.	explanation, case	
Designing the software architecture	studies	

5. Overview and history of styles and patterns. Data-centered and data-flow systems	Exposure, description, explanation, case studies
6. Distributed systems. Interactive and hierarchical systems	Exposure, description, explanation, case studies
7. Overview of the detailed design. Structural and behavioral design of components	Exposure, description, explanation, discussion of case studies
8. Creational design patterns in the detailed design. Abstract Factory. Factory Method	Exposure, description, explanation, discussion of case studies
9. Creational design patterns in the detailed design. Builder. Prototype. Singleton.	Exposure, description, explanation, discussion of case studies
10. Structural design patterns in the detailed design. Adapter. Composite. Facade	Exposure, description, explanation, discussion of case studies
11. Behavioral design patterns in the detailed design. Iterator. Observer.	Exposure, description, explanation, discussion of case studies
12. Construction design. Flow-, state-, and table-based construction design. Programming design language, styles, and quality evolution.	Exposure, description, explanation, discussion of case studies
13. Software design management. Design management framework. Planning	Exposure, description, explanation, discussion of case studies
14. Software design management. Implementation and termination. Final review	Exposure, description, explanation, discussion of case studies

Bibliography

- 1. OTERO, C.E.: Software Engineering Design, CRC Press, 2012. site: http://softwareengineeringdesign.com/Default.htm
- 2. BASS, L., CLEMENTS, P., KAZMAN R.: Software Architecture in Practice, 2nd ed., Addison-Wesley, 2003
- 3. KRUCHTEN, PH.: Architectural Blueprints The 4+1 View Model of Software Architecture, IEEE Software 12 (6), 1995, pp. 42-50.
- 4. SHAW, M.: The Coming-of-Age of Software Architecture Research, in Proc. of the 23rd ICSE, IEEE Comp. Soc. 2001, 656, [http://www.cs.cmu.edu/afs/cs.cmu.edu/project/vit/ ftp/pdf/shaw-keynote-rev.pdf]
- 5. SHAW, M., GARLAN, D.: Software Architecture: Perspectives on an Emerging Discipline, Prentice-Hall, 1996.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Administrivia	Conversation, debate, case studies	Seminar is organized as a total of 12 hours – 2 hours every other week
2. Establishing target application. First	Conversation, debate,	

miniproject started	case studies, examples
3. Work on miniproject 1	Exposure, debate, case
	studies, examples
4. Miniproject 1 due. Second miniproject started	Exposure, debate, case
	studies, examples
5. Work on miniproject 2	Exposure, debate, case
	studies, examples
6. Miniproject 2 due. Detailed design issues	Exposure, live demos,
	examples
D'11' 1	

Bibliography

Project work: students have to complete two miniprojects, assigned in seminars 2 (software requirements, due date week 7-8) and 3 (software architecture, due date week 11-12).

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course follows the IEEE and ACM Curricula Recommendations for Software Engineering studies;
- Courses with similar content are taught in the major universities in Romania offering similar study programs;
- Course content is considered very important by the software companies for improving average software development skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	- know the basic concepts of	Written exam	40%
	software design;		
	- apply different		
	architectural styles and		
	design patterns to different		
	problem domains		
10.5 Seminar/lab activities	- be able to study and review	-Miniproject 1 work	20%
	literature regarding software	-Miniproject 2 work	20%
	design	-Seminar/lab attendance	10%
	- be able to solve a problem	-Default	10%
	using different architectural		
	and design patterns		
10.6 Minimum performance standards			
 At least grade 5 (from a scale of 1 to 10) at written exam and project work. 			

Date	Signature of course coordinate	or Signature of seminar coordinator
April 30, 2013	Prof.PhD. Bazil PARV	Prof.PhD. Bazil PARV
Date of approval		Signature of the head of department
Prof.PhD. Bazil I		Prof.PhD. Bazil PARV