1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Component-based Programming
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Programming paradigms								
2.2 Course coordinator Prof.PhD. Bazil Parv								
2.3 Seminar coordinator				Prof.PhD. Bazil Parv				
2.4. Year of	1	2.5	1	2.6. Type ofE2.7 Type ofcompulsory				
study		Semester		evaluation discipline				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	4	Of which: 3.5 course	28	3.6	14
	2			seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					70
Tutorship					14
Evaluations					14
Other activities:					-
3.7 Total individual study hours		158			
3.8 Total hours per semester		200			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Fundamentals of Programming	
	Object-Oriented Programming	
	Functional and Logic Programming	
4.2. competencies	Average programming skills	

8

5. Conditions (if necessary)

5.1. for the course	Videoprojector, Internet access
5.2. for the seminar /lab	Computers, Internet access, UML tool

activities	

6. Specific competencies acquired

	te competencies acquirea
Professional competencies	 Understanding and working with basic concepts in computer programming; Capability of analysis and synthesis; Proficient use of tools and languages specific to software systems development Knowing the specifics of main programming paradigms.
Transversal competencies	 Professional communication skills; concise and precise description, both oral and written, of professional results, Independent work capabilities; able to fulfill different roles Antepreneurial skills;

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Know and understand fundamental concepts of programming. Be able to apply different programming paradigms to different programming projects
7.2 Specific objective of the discipline	At the end of the course, students
	 know the main features of different programming paradigms: procedural, object-oriented, functional, logical, component-based, event-based have a good understanding of the following terms: variable, object, data type, component, interface, polymorphism; learn the similarities and differences between component-based programming and object-oriented programming in the frame of inheritance and composition issues; understand the importance of component's scale, granularity, and architectural aspects;

8.	Content	

8.1 Course	Teaching methods	Remarks
1. Programming paradigms. Definitions. Main	Exposure, description,	
programming paradigms. Programming styles	explanation, debate	
	and dialogue,	
	discussion of case	
	studies	
2. Software component definition. Basic terms:	explanation, debate	
software component, object, module, interface,	and dialogue,	
software reuse. Standardization issues	discussion of case	
	studies	
3. Components, interfaces, and re-entrance.	Exposure, description,	
Different interface types for components. The	explanation	
constituents of a contract		
4. Components, interfaces, and re-entrance. The	Exposure, description,	

client-server relation in procedural-, object-, and component-based systems. Components and distributed systems	explanation				
5. Polymorphism. The data type concept in a programming language context. Type extensibility and independent extensibility of software components	Exposure, description, explanation				
6. Polymorphism. Safety issues in component- based systems. Interfaces and contract evolution	Exposure, description, explanation				
 Reuse mechanisms: inheritance and object composition. Kinds of inheritance. Using inheritance: advantages and pitfalls 	Exposure,description, explanation, discussion of case studies				
8. Reuse mechanisms: inheritance and object composition. Interface inheritance. Delegation, composition, inheritance, and polymorphism	Exposure,description, explanation, discussion of case studies				
9. Architectural issues in component-based systems. Reusing components. Classifying components with respect to their reuse	Exposure,description, explanation, discussion of case studies				
 10. Architectural issues in component-based systems. Design patterns. Frameworks. Software architecture in component-based systems 	Exposure,description, explanation, discussion of case studies				
 Programming styles in a component world. Connexion-oriented programming. Events and messages 	Exposure,description, explanation, discussion of case studies				
12. Programming styles in a component world. Dispatch interfaces and metaprogramming. Scripting	Exposure,description, explanation, discussion of case studies				
13. Wiring models for software components. General features of a wiring model. OMG CORBA, OMA	Exposure,description, explanation, discussion of case studies				
 14. Wiring models for software components. Sun Java: JavaBeans, Enterprise Java Beans. Microsoft: COM, ActiveX, COM+, .NET. Final review 	Exposure,description, explanation, discussion of case studies				
 Bibliography 1. D'SOUZA, DESMOND FRANCIS - WILLS, ALAN CAMERON: Objects, Components, and Frameworks with UML : The Catalysis Approach, Addison-Wesley, 1999. 2. SZYPERSKI, CLEMENS: Component Software. Beyond Object-Oriented Programming, Addison- Wesley (1st ed. 1998, 2nd ed. 2002). 					
 STROUSTRUP, BJARNE The C++ Programming Language Special Edition, Addison-Wesley, 2000 chapter 2 VAN ROY, PETER; HARIDI, SEIF Concepts, Techniques and Models of Computer Programming, MIT Press, 2004 					
5. WEGNER, PETER; Concepts and paradigms of		Remarks			
8.2 Seminar / laboratory 1. Establish paper title	Teaching methods Conversation, debate, case studies	Seminar is organized as a total of 7 hours – 2 hours			

		every other week
2. Establish project title	Conversation, debate,	
	case studies, examples	
3. Paper presentations & project progress reports	Exposure, debate, case	
	studies, examples	
4. Paper presentation & project progress reports	Exposure, debate, case	
	studies, examples	
5. Paper presentations & project progress reports	Exposure, debate, case	
	studies, examples	
6. Paper presentations & project progress reports	Exposure, debate, case	
	studies, examples	
7. Project presentation	Exposure, live demos	
Bibliography		

Students will serch and use programming paradigms documentation on the web, using main CS databases

The ELISA project http://jklunder.home.xs4all.nl

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course follows the IEEE and ACM Curriculla Recommendations for Software Engineering studies;
- Courses with similar content are taught in the major universities in Romania offering similar study programs;
- Course content is considered very important by the software companies for improving average software development skills

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
Type of activity	10.1 Evaluation citteria	10.2 Evaluation methods	
			grade (%)
10.4 Course	- know the basic concepts of	Written exam	40%
	programming;		
	- apply different		
	programming paradigms to		
	different problem domains		
10.5 Seminar/lab activities	- be able to study and review	-Paper work	20%
	literature regarding	-Project work	20%
	programming paradigms	-Seminar/lab attendance	10%
	- be able to solve a problem	-Default	10%
	using different programming		
	paradigms		
10.6 Minimum performance standards			
• At least grade 5 (from a scale of 1 to 10) at written exam, paper and project work.			

10 Evolution

Date

Signature of course coordinator

April 30, 2013 Prof.PhD. Bazil PARV Signature of seminar coordinator

Prof.PhD. Bazil PARV

Signature of the head of department

Date of approval

.....

Prof.PhD. Bazil PARV