SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	"Babes_Bolyai" University
1.2 Faculty	Faculty of Mathematics and Computer science
1.3 Department	Department of Computer Science
1.4 Field of study	Informatics(Computer Science)
1.5 Study cycle	Master
1.6 Study programme / Qualification	Computer Science

2. Information regarding the discipline

2.1 Name of the	2.1 Name of the discipline Models in Parallel Programming						
2.2 Course coor	2.2 Course coordinator Assoc.Prof.PhD. Niculescu Virginia						
2.3 Seminar coordinator				Assoc.Prof.PhD. Niculescu Virginia			
2.4. Year of study		2.5 Semester		2.6. Type of evaluation	Е.	2.7 Type of discipline	Mandatory

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar/laboratory	1 sem.
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6 seminar/laboratory	14
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					23
Tutorship					7
Evaluations					20
Other activities:					-

3.7 Total individual study hours	80
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Algorithmics, Object-oriented and functional programming
4.2. competencies	 Programming skills and basic abilities for dealing with abstractions

5. Conditions (if necessary)

5.1. for the course	• projector
5.2. for the seminar	• projector

6. Specific competencies acquired

Professional competencies	•	Knowledge, understanding of the basic concepts of parallel programming. Ability to work independently and/or in a team in order to solve problems in defined professional contexts (models). Knowledge, understanding of the theoretical foundations of parallel algorithms construction.
Transversal competencies	•	Ability to solve problems using parallel programming. Ability to do research work in the domain of the parallel programming by studing a particular model of parallel computation.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the subject, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has correct habits of analysis, design, and implementation using different models of parallel computation.
7.2 Specific objective of the discipline	 To present the basic paradigms of parallel programming . To offer different models of parallel programs development and understanding their necessity and their advantages. To create the ability to correctly develop parallel algorithms using different models of parallel computation (algorithms from linear algebra, numerical analysis, graph, searching and sorting algorithms)

8. Content

8.1 Course	Teaching methods	Remarks
1. General Introduction to parallel programming: - reasons for using parallel programming; - problems and difficulties in parallel programming; - the necessity of using models Parallel Computer Architectures - <i>Taxonomies</i>	Exposure: description, explanation, examples, discussion of case studies	
 2. Types of parallelism Implicit parallelism Explicit Parallelism Data-parallel model Message-passing model Shared-variable model Task Dependency Graph, Task Interaction Graph, 	Exposure: description, explanation, examples, discussion of case studies	

Degree of Concurrency, Granularity, Mapping	
3. Phases in parallel programs development	Exposure: description,
(PCAM)	explanation, examples,
- Partitioning, Communication, Agglomeration,	discussion of case studies
Mapping	
Decomposition	
- functional (task decomposition)	
- of the domain(geometrical)	
- data-distributions	
4.	Exposure: description, explanation, examples,
Shared Memory Parallel Programming	discussion of case studies
Synchronization problems	
OpenMP	
5. Interconnection networks	Exposure: description,
	explanation, examples,
	discussion of case studies
6. Distributed Memory Parallel Programming	Exposure: description,
- MPI	explanation, examples,
	discussion of case studies
7. PRAM models	Exposure: description,
Computational networks	explanation, examples,
Brent Theorem	discussion of case studies
8.	Exposure: description,
Analytical Modeling of Parallel Systems	explanation, examples,
Scalability	discussion of case studies
9. Parallel programming paradigms	Exposure: description,
- Master-slaves	explanation, examples,
- Task-Farm	discussion of case studies
- Work-Pool	
- Divide &Conquer - Pipeline	
•	Evnogura: description
Bulk Synchronous Parallel programming	Exposure: description, explanation, examples,
- BSP	discussion of case studies
- LogP	
10. Functional parallel programming	Exposure: description,
Bird-Meertens Formalism (BMF).	explanation, examples, discussion of case studies
- List Homomorphisms	discussion of cuse studies
- Categorical Data Types	
Map-Reduce Model	
	Exposure: description,
11.	explanation, examples,
Pares – A Model for Parallel Recursive Programs.	discussion of case studies
- Special data structures of parallel recursion:	
PowerLists, ParLists, PLists	

 12. Interleaving/ Nondeterminancy/ Formal Methods UNITY "Unbounded Nondeterministic Iterative Transformations" model CSP(Communicating Sequential Processes) model 	Exposure: description, explanation, examples, discussion of case studies	
General presentation of the parallel computation models (PCM). Requierements for PCM Classification: - implicit parallelism - implicit decomposition - explicit decomposition - explicit mapping -explicit communication - everything explicit Main Categories of Models Classification/Comparison of the models for parallel computation.	Exposure: description, explanation, examples, discussion of case studies	

Bibliography

- 1. Rob H. Bisseling. Parallel Scientific Computation: A Structured Approach using BSP and MPI, Oxford University Press, March 2004. 324 pages.
- 2. Ian Foster. Designing and Building Parallel Programs, Addison-Wesley 1995.
- 3. Grama, A. Gupta, G. Karypis, V. Kumar. Introduction to Parallel Computing, Addison Wesley, 2003.
- 4. K.M. Chandy, J. Misra, Parallel Program Design: A Foundation, Addison-Wesley, 1988.
- 5. C. A. R. Hoare, Communicating Sequential Processes. June 21, Prentice Hall International, 2004.
- 6. J. Misra. PowerList: A structure for parallel recursion. ACM Transactions on Programming Languages and Systems, 16(6):1737-1767, November 1994.
- 7. V. Niculescu. Calcul Paralel. Proiectare si dezvoltare formala a programelor paralele. Presa Univ. Cluiana, 2006.
- 8. V. Niculescu. *PARES A Model for Parallel Recursive Programs*, Romanian Journal of Information Science and Technology (ROMJIST), Ed. Academiei Romane, Volume 14(2011), No. 2, pp. 159–182, 2011
- 9. A.W. Roscoe, The Theory and Practice of Concurrency. Prentice-Hall 1998.
- 10. D. Skillicorn. Foundations of Parallel Programming, Cambridge International Series on Parallel Computations, 1994
- 11. D.B. Skillicorn, Jonathan Hill, W. F. McColl, Questions and answers about BSP (1996)
- 12. D.B. Skillicorn, D. Talia. Models and Languages for Parallel Computation. ACM Computer Surveys, 30(2) pg.123-136, June 1998.

8.2 Seminar	Teaching methods	Remarks
Simple examples of parallel programs.	Explanation, dialogue, case studies	The seminar is structured as 2 hours classes every second week

Tehniques used in parallel programs construction.	Dialogue, debate, case studies, examples, proofs
3. PRAM - examples	Dialogue, debate, case studies, examples, proofs
4. MPI and OpenMP examples	Dialogue, debate, explanation, examples
5. Student presentations	Dialogue, debate, explanation, examples
6. Student presentations	Dialogue, debate, explanation, examples
7. Student presentations	Dialogue, debate, explanation, examples

Bibliography

- 1. C. A. R. Hoare. Communicating Sequential Processes was first published in by Prentice Hall International, 2004(revised). [http://www.usingcsp.com/cspbook.pdf]
- 2. D. Grigoras. Calculul Paralel. De la sisteme la programarea aplicatiilor. Computer Libris Agora, 2000.
- 3. V. Niculescu, Modele de elaborare a algoritmilor paraleli, PhD. Thesis, Univ. Babes-Bolyai, 2002.
- 4. Roscoe, A. W. (Revised 2005), The Theory and Practice of Concurrency, Prentice Hall, ISBN 0-13-674409-5
- 5. Parallel Programming Model Watch [http://view.eecs.berkeley.edu/wiki/Parallel Programming Model Watch]

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	- know the basic principles and paradigms of the domain;	Written exam	40%

10.5 Seminar	- a research paper (referat) that presents a model of parallel computation	-presentation -discussion	60%			
10.6 Minimum performance standards						
➤ At least grade 5 (from a scale of 1 to 10) at both written exam and research paper.						
Date	Signature of courseNiculescu	se coordinator Signature of seminar coordinator cu VirginiaNiculescu Virginia				
Date of approval		Signature of the head of d	epartment			

.....

.....