SYLLABUS

1. Information regarding the programme

8
Babeş Bolyai University
Faculty of Mathematics and Computer Science
Department of Computer Science
Computer Science
Bachelor
Computer Science

2. Information regarding the discipline

2.1 Name of the	dis	cipline	Gr	aph algorithms			
2.2 Course coordinator Lect. PhD. Radu Lupsa							
2.3 Seminar coo	ordi	nator		Lect. PhD. Radu Luj	osa		
2.4. Year of	1	2.5	2	2.6. Type of	С	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 sem +
-				seminar/laboratory	1 lab
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					
Other activities:					
2.7 Total individual study hours 60					

3.7 Total individual study nours	69
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Data Structures and Algorithms	
4.2. competencies	Average skils in analysis and design of algorithms and data structures,	
	including implementing them in a programming language.	
5.1. for the course	•	
5.2. for the seminar /lab	Laboratory with computers; high level programming language	
activities	environment (C++, Java, .NET, python)	

5. Conditions (if necessary)

6. Specifi	ic competencies acquired
Prof	• Enhance the skills of analyzing and designing algorithms and data structures.
essio nal com pete ncies	• Enhance the ability to analyze the various trade-offs in the implementation of a theoretical algorithm.
Tran svers al com pete ncies	• Enhance the ability to find and use abstractions in modeling practical problems.

7.1 General objective of the discipline	• Knowing the graph theoretical concepts and using these concepts in the problem modeling.				
	• Knowing how to implement the graph algorithms in a programming language.				
7.2 Specific objective	• Analyzing the issues around the main topics of graph: connectivity, shortest paths, modeling prerequisites and activity planning, flows, traveling salesman problem, planar graphs.				

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course	Teaching methods	Remarks
1. Basic graph theory definitions (graph,	Exposure: description,	
multigraph, directed graph/multigraph, walk, trail,	explanation, examples, debate	
path), basics on graph representations		
2. In-deep study of possible graph	Exposure: description,	
representations	explanation, examples, debate	
3. Connectivity and shortest path	Exposure: description,	
problems. Depth-first and breadth-first	explanation, examples, debate	
traversal of a graph.Connected and strongly-		
connected components.		
4. Lowest-cost path in a graph. Dynamic	Exposure: description,	
programming approach. Bellman-Ford	explanation, examples, debate	
algorithm.		
5. Dijkstra algorithm . Floyd-Warshal	Exposure: description,	
algorithm.	explanation, examples, debate	
6. Dependency graphs, partial order and	Exposure: description,	
topological sorting. Topological sorting	explanation, examples, debate	
algorithms and strongly connected		
components algorithms.		
7. Activity planning problem and	Exposure: description,	
algorithms.	explanation, examples, debate	
8. Trees and forests. Minimum spanning	Exposure: description,	
trees. Kruskal and Prim algorithms.	explanation, examples, debate	
9. NP-complete problems. Hamiltonian	Exposure: description,	

~ • •• .

cycle, Traveling Salesman Problem.	explanation, examples, debate
10. Other hard problems: clique, vertex	Exposure: description,
cover, coloring.	explanation, examples, debate
11. Eulerian cycle. Planar graphs: Euler's	Exposure: description,
relation, K5 and K3,3 graphs, relations	explanation, examples, debate
between number of edges and vertices.	
12. Transport networks. Maximum flow.	Exposure: description,
Ford-Fulkerson algorithm.	explanation, examples, debate
13. Maximum flow of minimim cost.	Exposure: description,
	explanation, examples, debate
14. Matching problem	Exposure: description,
	explanation, examples, debate

Bibliography

CORMEN, LEISERSON, RIVEST: Introducere in algoritmi, Editura Computer Libris Agora,
 2000.

- 2. T. TOADERE: Grafe. Teorie, algoritmi si aplicatii , Ed. Albastra, Cluj-N., 2002
- 3. KÁSA ZOLTÁN: Combinatiroca cu aplicatii, Presa Universitara Clujeana, 2003.
- 4. BERGE C., Graphes et hypergraphes, Dunod, Paris 1970.
- 5. BERGE C., Teoria grafurilor si aplicatiile ei, Ed. Tehnica, 1972

6. http://www.cs.ubbcluj.ro/~rlupsa/edu/grafe/

8.2 Seminar		Teaching methods	Remarks
1.	Basic definitions. Graph	Dialogue, debate, examples,	
repres	sentations.	guided discovery	
2.	More on graph representations. Graph	Dialogue, debate, examples,	
traver	sals. Connected components.	guided discovery	
3.	Finding shortest path. Bellman-Ford	Dialogue, debate, examples,	
algori	ithm.	guided discovery	
4.	Shortest path: Dijkstra and Floyd-	Dialogue, debate, examples,	
Wars	hall.	guided discovery	
5.	Tree traversal. Minimum spanning tree:	Dialogue, debate, examples,	
Krusl	al and Prim algorithms.	guided discovery	
6.	Planar graphs. Hard problems in graph	Dialogue, debate, examples,	
theor	у.	guided discovery	
7.	Maximim flow and matching problems.	Dialogue, debate, examples,	
		guided discovery	
8.3 Laborato	ry	Teaching methods	Remarks
8.3 Laborator 8.	ry Graph representations	Teaching methods Dialogue, debate, case study,	Remarks
8.3 Laborato 8.	ry Graph representations	Teaching methods Dialogue, debate, case study, guided discovery	Remarks
8.3 Laborato 8. 9.	ry Graph representations More on graph representations	Teaching methods Dialogue, debate, case study, guided discovery Dialogue, debate, case study,	Remarks
8.3 Laborator 8. 9.	ry Graph representations More on graph representations	Teaching methods Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery	Remarks
8.3 Laborato 8. 9. 10.	ry Graph representations More on graph representations Connectivity and lowest length paths	Teaching methods Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery Dialogue, debate, case study,	Remarks
8.3 Laborator 8. 9. 10.	ry Graph representations More on graph representations Connectivity and lowest length paths	Teaching methods Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery	Remarks
8.3 Laborato 8. 9. 10. 11.	ry Graph representations More on graph representations Connectivity and lowest length paths Lowest cost paths	Teaching methods Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery Dialogue, debate, case study,	Remarks
8.3 Laborato 8. 9. 10. 11.	ry Graph representations More on graph representations Connectivity and lowest length paths Lowest cost paths	Teaching methods Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery	Remarks
8.3 Laborator 8. 9. 10. 11. 12.	ry Graph representations More on graph representations Connectivity and lowest length paths Lowest cost paths Dependency graphs. Minimum	Teaching methods Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery Dialogue, debate, case study,	Remarks
8.3 Laborator 8. 9. 10. 11. 12. spann	ry Graph representations More on graph representations Connectivity and lowest length paths Lowest cost paths Dependency graphs. Minimum ing trees.	Teaching methods Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery	Remarks
8.3 Laborato 8. 9. 10. 11. 12. spann 13.	ry Graph representations More on graph representations Connectivity and lowest length paths Lowest cost paths Dependency graphs. Minimum ing trees. NP-complete problems	Teaching methods Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery	Remarks
8.3 Laborator 8. 9. 10. 11. 12. spann 13.	ry Graph representations More on graph representations Connectivity and lowest length paths Lowest cost paths Dependency graphs. Minimum ing trees. NP-complete problems	Teaching methods Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery	Remarks
8.3 Laborator 8. 9. 10. 11. 12. spann 13. 14.	ry Graph representations More on graph representations Connectivity and lowest length paths Lowest cost paths Dependency graphs. Minimum hing trees. NP-complete problems Finishing the lab activity.	Teaching methods Dialogue, debate, case study, guided discovery Dialogue, debate, case study, guided discovery	Remarks

Bibliography

1. KÁSA Z., TARTIA C., TAMBULEA L.: Culegere de probleme de teoria grafelor, Lito. Univ. Cluj-Napoca 1979.

2. CATARANCIUC S., IACOB M.E., TOADERE T., Probleme de teoria grafelor, Lito. Univ. Cluj-Napoca, 1994.

3. TOMESCU I., Probleme de combinatorica si teoria grafurilor. Ed. Did. si Pedag. Bucuresti 1981.

4. KÁSA Z., TARTIA C., TAMBULEA L.: Culegere de probleme de teoria grafelor, Lito. Univ. Cluj-Napoca 1979.

5. CATARANCIUC S., IACOB M.E., TOADERE T., Probleme de teoria grafelor, Lito. Univ. Cluj-Napoca, 1994.

6. TOMESCU I., Probleme de combinatorica si teoria grafurilor. Ed. Did. si Pedag. Bucuresti 1981.

7. http://www.cs.ubbcluj.ro/~rlupsa/edu/grafe/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the			
			grade (%)			
10.4 Course	 know the basic principle of the domain; apply the course concepts problem solving 	Written exam	66.67%			
10.5 Seminar/lab activities	- be able to implement course concepts and algorithms	Verifying the practical works.	33.33%			
10.6 Minimum performance standards						
 At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work. 						

Date	Signature of course coordinator	Signature of seminar coordinator
	Lect. PhD. Radu Lupsa	Lect. PhD. Radu Lupsa

Date of approval

Signature of the head of department

••••••

.....