1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the disciplineData Structures and Algorithms							
2.2 Course coor	se coordinator Lecturer PhD. Dana Lupsa						
2.3 Seminar coordinator				Lecturer PhD. Dana Lupsa			
2.4. Year of	1	2.5	2	2.6. Type of	Ε	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem	
				seminar/laboratory		
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14	
				seminar/laboratory		
Time allotment:						
Learning using manual, course suppor	t, bił	oliography, course notes	5		20	
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays						
Tutorship						
Evaluations						
Other activities:						
3.7 Total individual study hours83						
3.8 Total hours per semester 125						

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	•
4.2. competencies	•

5

5. Conditions (if necessary)

5.1. for the course	Class room with projector
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

Professional competencies	• Knowledge, understanding and use of data structure concepts and their algorithms; data structures and their algorithms are basic concepts of theoretical Computer Science.
Transversal competencies	 Ability to choose appropriate data structure in order to model and solve real world problems Improved programming abilities

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Be able to understand basic data structures Improved programming skills
7.2 Specific objective of the discipline	 Understand data structure design, algorithms and their complexities Acquire knowledge necessary for working with data structure libraries

8. Content

8.1 Cc	ourse	Teaching methods	Remarks
1.	Introduction. Data Structures. Complexity.	Exposure:	
		description, examples	
2.	Data Types: domain, operations and data	Exposure:	
	representation	description,	
		explanation,	
		examples	
3.	Collection containers. Iterators	Exposure:	
	Set, Bag, Map, Stack ; Queue ; Priority	description,	
	Queue	examples, discussion	
	- Essential properties: general& specific	of case studies	
	issues		
4.	Arrays. Vectors	Exposure:	
		description,	
		examples, case	
		studies	
5.	Linked Lists	Exposure:	
	Types of linked list: singly linked, doubly	description,	
	linked, circular	examples, case	
	Representation & operations design	studies	
6.	Hash: Hash table, hash function	Exposure:	
	- Properties & operations	description,	
		explanation,	
		examples, discussion	
		of case studies	
7.	Trees	Exposure:	

- Concepts related to trees	description,					
- ADT	explanation,					
- reprezentation	examples, discussion					
- tree traversals; recursive / non recursive	of case studies					
algorithms						
8. Heaps ; HeapSort	Exposure:					
	description,					
	explanation,					
	examples, discussion					
	of case studies					
9. Binary Search Trees	Exposure:					
Balanced trees. Terminology. Examples	description,					
	examples, discussion					
	of case studies					
10. Binary Search Trees	Exposure:					
Balanced trees. Terminology. Examples	description,					
	explanation.					
	examples					
11. Balanced trees. Red-black trees	Exposure:					
	description.					
	explanation.					
	examples discussion					
	of case studies					
12 Balanced trees AVI trees	Exposure:					
12. Dataneed trees. AVE trees	description					
	explanation					
	examples					
13 Issues in choosing an ADT to solve a problem:	Examples					
issues in choosing DS for an ADT	ease studies					
A dyanta goo / digadyanta goo .	case studies					
- Advantages / disadvantages :						
unie/space analysis						
14. Examples and applications	Examples, discussion					
	of case studies					
Bibliography	I					
1. CORMEN, THOMAS H LEISERSON, CHARLES	- RIVEST, RONALD R	L: Introducere în algoritmi.				
Cluj-Napoca: Editura Computer Libris Agora, 2000.						
2. FRENTIU M., POP H.F., SERBAN G., Programming	g Fundamentals, Ed.Presa	a Universitara Clujeana,				
Cluj-Napoca, 2006						
3. HOROWITZ, E.: Fundamentals of Data Structures in	C++. Computer Science	Press, 1995.				
4. MOUNT, DAVID M.: Data Structures. University of	Maryland, 1993.					
5. NICULESCU V., CZIBULA G., Structuri fundament	ale de date. O perspectiv	a orientata obiect. Editura				
Casa Cartii de Stiinta, Cluj-Napoca, 2011						
6. STANDISH, T.A.: Data Structures, Algorithms & So	ftware Principles in C, A	ddison-Wesley, 1995				
7. SIMONAS SALTENIS, Algorithms and Data Structures, 2002.						
8. Generic and JCF Java, http://download.oracle.com/iavase/1.5.0/docs/guide/						
9. STLProgrammer's Guide http://www.sgi.com/tech/stl/index.html.						
10. STL Containers - C++ Reference, http://www.cplusplus.com/reference/stl/						
8.2 Seminar	Teaching methods	Remarks				
1. DS as a problem of data representation.	Dialogue, debate,	The seminar is structured				
Algorithms and complexities	case studies,	as 2 hours classes every				
	examples	second week				
2 DS and operation design for different kind of	Dialogue, debate.					

lists	case studies,
	examples
3. Concrete problems to be solved by using	Dialogue, debate,
studied collections containers	case studies,
	examples
4. Define a DS for an ADT under some given	Dialogue, debate,
restrictions	case studies,
	examples
5. Trees.	Dialogue, debate,
Operation design	case studies,
Recursive/ non recursive	examples
6. Binary trees	Dialogue, debate,
- Iterators over binary trees	case studies,
	examples
7. Choose DS for concrete problems. Examples	Dialogue, debate,
	case studies,
	examples
Bibliography	

1. CORMEN, THOMAS H. - LEISERSON, CHARLES - RIVEST, RONALD R.: Introducere în algoritmi. Cluj-Napoca: Editura Computer Libris Agora, 2000.

2. FRENTIU M., POP H.F., SERBAN G., Programming Fundamentals, Ed.Presa Universitara Clujeana, Cluj-Napoca, 2006

3. HOROWITZ, E.: Fundamentals of Data Structures in C++. Computer Science Press, 1995.

4. STANDISH, T.A.: Data Structures, Algorithms & Software Principles in C, Addison-Wesley, 1995

5. SIMONAS SALTENIS, Algorithms and Data Structures, 2002.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects ACM Curriculla Recommendations for Computer Science studies
- The course exists in the studying program of all major universities in Romania and abroad;

• "Many of the top software companies like Google and Facebook hire experienced computer scientists who have extensive knowledge of algorithms and data structures. These areas are also a topic in software development interviews at both startups and large companies" Sam Snyder (He works for Motorola Mobility (a division of Google)) http://samsnyder.com/2011/05/18/algorithms-and-data-structures/

10. Evaluation

•

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the basic principle of the domain; apply the course concepts 	Written exam	60%
10.5 Seminar/lab activities	Realization of a project - apply the course	Project evaluation	30%

	concepts - problem solving					
	- Homework assignments, including intermediate delivery of (parts of) the project	Homework verification	10%			
10.6 Minimum performance standards						
At least grade 5 (from a scale of 1 to 10) at both written exam and final grade						

Date

Signature of course coordinator

Signature of seminar coordinator

lecturer PhD Dana Lupsa

.....

lecturer PhD Dana Lupsa

Date of approval

Signature of the head of department

.....

.....